# coding=utf-8
# Copyright 2019 Facebook AI Research and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch XLM-RoBERTa model."""

import math
from typing import Optional, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN, gelu
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPoolingAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import auto_docstring, logging
from ...utils.deprecation import deprecate_kwarg
from .configuration_xlm_roberta import XLMRobertaConfig


logger = logging.get_logger(__name__)


# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->XLMRoberta
class XLMRobertaEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """

    # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
        )
        self.register_buffer(
            "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
        )

        # End copy
        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
        )

    def forward(
        self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
    ):
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
        # issue #5664
        if token_type_ids is None:
            if hasattr(self, "token_type_ids"):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

        Args:
            inputs_embeds: torch.Tensor

        Returns: torch.Tensor
        """
        input_shape = inputs_embeds.size()[:-1]
        sequence_length = input_shape[1]

        position_ids = torch.arange(
            self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
        )
        return position_ids.unsqueeze(0).expand(input_shape)


# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->XLMRoberta
class XLMRobertaSelfAttention(nn.Module):
    def __init__(self, config, position_embedding_type=None, layer_idx=None):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.position_embedding_type = position_embedding_type or getattr(
            config, "position_embedding_type", "absolute"
        )
        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)

        self.is_decoder = config.is_decoder
        self.layer_idx = layer_idx

    @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor]:
        batch_size, seq_length, _ = hidden_states.shape
        query_layer = self.query(hidden_states)
        query_layer = query_layer.view(batch_size, -1, self.num_attention_heads, self.attention_head_size).transpose(
            1, 2
        )

        is_cross_attention = encoder_hidden_states is not None
        if past_key_values is not None:
            if isinstance(past_key_values, EncoderDecoderCache):
                is_updated = past_key_values.is_updated.get(self.layer_idx)
                if is_cross_attention:
                    # after the first generated id, we can subsequently re-use all key/value_layer from cache
                    curr_past_key_value = past_key_values.cross_attention_cache
                else:
                    curr_past_key_value = past_key_values.self_attention_cache
            else:
                curr_past_key_value = past_key_values

        current_states = encoder_hidden_states if is_cross_attention else hidden_states
        if is_cross_attention and past_key_values is not None and is_updated:
            # reuse k,v, cross_attentions
            key_layer = curr_past_key_value.layers[self.layer_idx].keys
            value_layer = curr_past_key_value.layers[self.layer_idx].values
        else:
            key_layer = self.key(current_states)
            key_layer = key_layer.view(batch_size, -1, self.num_attention_heads, self.attention_head_size).transpose(
                1, 2
            )
            value_layer = self.value(current_states)
            value_layer = value_layer.view(
                batch_size, -1, self.num_attention_heads, self.attention_head_size
            ).transpose(1, 2)

            if past_key_values is not None:
                # save all key/value_layer to cache to be re-used for fast auto-regressive generation
                cache_position = cache_position if not is_cross_attention else None
                key_layer, value_layer = curr_past_key_value.update(
                    key_layer, value_layer, self.layer_idx, {"cache_position": cache_position}
                )
                # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
                if is_cross_attention:
                    past_key_values.is_updated[self.layer_idx] = True

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            query_length, key_length = query_layer.shape[2], key_layer.shape[2]
            if past_key_values is not None:
                position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
                    -1, 1
                )
            else:
                position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r

            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        return context_layer, attention_probs


# Copied from transformers.models.roberta.modeling_roberta.RobertaSdpaSelfAttention with Roberta->XLMRoberta
class XLMRobertaSdpaSelfAttention(XLMRobertaSelfAttention):
    def __init__(self, config, position_embedding_type=None, layer_idx=None):
        super().__init__(config, position_embedding_type=position_embedding_type, layer_idx=layer_idx)
        self.dropout_prob = config.attention_probs_dropout_prob

    # Adapted from XLMRobertaSelfAttention
    @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor]:
        if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
            # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
            logger.warning_once(
                "XLMRobertaSdpaSelfAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support "
                "non-absolute `position_embedding_type` or `output_attentions=True` or `head_mask`. Falling back to "
                "the manual attention implementation, but specifying the manual implementation will be required from "
                "Transformers version v5.0.0 onwards. This warning can be removed using the argument "
                '`attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                past_key_values,
                output_attentions,
                cache_position,
            )

        bsz, tgt_len, _ = hidden_states.size()

        query_layer = (
            self.query(hidden_states).view(bsz, -1, self.num_attention_heads, self.attention_head_size).transpose(1, 2)
        )

        is_cross_attention = encoder_hidden_states is not None
        current_states = encoder_hidden_states if is_cross_attention else hidden_states
        if past_key_values is not None:
            if isinstance(past_key_values, EncoderDecoderCache):
                is_updated = past_key_values.is_updated.get(self.layer_idx)
                if is_cross_attention:
                    # after the first generated id, we can subsequently re-use all key/value_states from cache
                    curr_past_key_value = past_key_values.cross_attention_cache
                else:
                    curr_past_key_value = past_key_values.self_attention_cache
            else:
                curr_past_key_value = past_key_values

        current_states = encoder_hidden_states if is_cross_attention else hidden_states
        if is_cross_attention and past_key_values is not None and is_updated:
            # reuse k,v, cross_attentions
            key_layer = curr_past_key_value.layers[self.layer_idx].keys
            value_layer = curr_past_key_value.layers[self.layer_idx].values
        else:
            key_layer = (
                self.key(current_states)
                .view(bsz, -1, self.num_attention_heads, self.attention_head_size)
                .transpose(1, 2)
            )
            value_layer = (
                self.value(current_states)
                .view(bsz, -1, self.num_attention_heads, self.attention_head_size)
                .transpose(1, 2)
            )

            if past_key_values is not None:
                # save all key/value_layer to cache to be re-used for fast auto-regressive generation
                cache_position = cache_position if not is_cross_attention else None
                key_layer, value_layer = curr_past_key_value.update(
                    key_layer, value_layer, self.layer_idx, {"cache_position": cache_position}
                )
                # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
                if is_cross_attention:
                    past_key_values.is_updated[self.layer_idx] = True

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create
        # a causal mask in case tgt_len == 1.
        is_causal = self.is_decoder and not is_cross_attention and attention_mask is None and tgt_len > 1

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_layer,
            key_layer,
            value_layer,
            attn_mask=attention_mask,
            dropout_p=self.dropout_prob if self.training else 0.0,
            is_causal=is_causal,
        )

        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, tgt_len, self.all_head_size)

        return attn_output, None


# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput with Roberta->XLMRoberta
class XLMRobertaSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


XLM_ROBERTA_SELF_ATTENTION_CLASSES = {
    "eager": XLMRobertaSelfAttention,
    "sdpa": XLMRobertaSdpaSelfAttention,
}


# Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->XLMRoberta,ROBERTA->XLM_ROBERTA
class XLMRobertaAttention(nn.Module):
    def __init__(self, config, position_embedding_type=None, layer_idx=None):
        super().__init__()
        self.self = XLM_ROBERTA_SELF_ATTENTION_CLASSES[config._attn_implementation](
            config,
            position_embedding_type=position_embedding_type,
            layer_idx=layer_idx,
        )
        self.output = XLMRobertaSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor]:
        self_outputs = self.self(
            hidden_states,
            attention_mask=attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            past_key_values=past_key_values,
            output_attentions=output_attentions,
            cache_position=cache_position,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate with Roberta->XLMRoberta
class XLMRobertaIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.models.roberta.modeling_roberta.RobertaOutput with Roberta->XLMRoberta
class XLMRobertaOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->XLMRoberta
class XLMRobertaLayer(GradientCheckpointingLayer):
    def __init__(self, config, layer_idx=None):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = XLMRobertaAttention(config, layer_idx=layer_idx)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            if not self.is_decoder:
                raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
            self.crossattention = XLMRobertaAttention(config, position_embedding_type="absolute", layer_idx=layer_idx)
        self.intermediate = XLMRobertaIntermediate(config)
        self.output = XLMRobertaOutput(config)

    @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        cache_position: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor]:
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            past_key_values=past_key_values,
            cache_position=cache_position,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        if self.is_decoder and encoder_hidden_states is not None:
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
                    " by setting `config.add_cross_attention=True`"
                )

            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask=encoder_attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                past_key_values=past_key_values,
                output_attentions=output_attentions,
                cache_position=cache_position,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


# Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->XLMRoberta
class XLMRobertaEncoder(nn.Module):
    def __init__(self, config, layer_idx=None):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([XLMRobertaLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
        cache_position: Optional[torch.Tensor] = None,
    ) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        if use_cache and self.config.is_decoder and past_key_values is None:
            past_key_values = EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config))

        if use_cache and self.config.is_decoder and isinstance(past_key_values, tuple):
            logger.warning_once(
                "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.58.0. "
                "You should pass an instance of `EncoderDecoderCache` instead, e.g. "
                "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
            )
            past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            layer_outputs = layer_module(
                hidden_states,
                attention_mask,
                layer_head_mask,
                encoder_hidden_states,  # as a positional argument for gradient checkpointing
                encoder_attention_mask=encoder_attention_mask,
                past_key_values=past_key_values,
                output_attentions=output_attentions,
                cache_position=cache_position,
            )

            hidden_states = layer_outputs[0]
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    past_key_values,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


# Copied from transformers.models.roberta.modeling_roberta.RobertaPooler with Roberta->XLMRoberta
class XLMRobertaPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


@auto_docstring
# Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->XLMRoberta
class XLMRobertaPreTrainedModel(PreTrainedModel):
    config: XLMRobertaConfig
    base_model_prefix = "roberta"
    supports_gradient_checkpointing = True
    _no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaSelfAttention", "XLMRobertaSdpaSelfAttention"]
    _supports_sdpa = True

    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights with BertLMPredictionHead->XLMRobertaLMHead
    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, XLMRobertaLMHead):
            module.bias.data.zero_()


@auto_docstring
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
class XLMRobertaModel(XLMRobertaPreTrainedModel):
    _no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaLayer"]

    def __init__(self, config, add_pooling_layer=True):
        r"""
        add_pooling_layer (bool, *optional*, defaults to `True`):
            Whether to add a pooling layer
        """
        super().__init__(config)
        self.config = config

        self.embeddings = XLMRobertaEmbeddings(config)
        self.encoder = XLMRobertaEncoder(config)

        self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None

        self.attn_implementation = config._attn_implementation
        self.position_embedding_type = config.position_embedding_type

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[list[torch.FloatTensor]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.Tensor] = None,
    ) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        past_key_values_length = 0
        if past_key_values is not None:
            past_key_values_length = (
                past_key_values[0][0].shape[-2]
                if not isinstance(past_key_values, Cache)
                else past_key_values.get_seq_length()
            )

        if token_type_ids is None:
            if hasattr(self.embeddings, "token_type_ids"):
                buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )

        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device)

        use_sdpa_attention_masks = (
            self.attn_implementation == "sdpa"
            and self.position_embedding_type == "absolute"
            and head_mask is None
            and not output_attentions
        )

        # Expand the attention mask
        if use_sdpa_attention_masks and attention_mask.dim() == 2:
            # Expand the attention mask for SDPA.
            # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
            if self.config.is_decoder:
                extended_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                    attention_mask,
                    input_shape,
                    embedding_output,
                    past_key_values_length,
                )
            else:
                extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
                    attention_mask, embedding_output.dtype, tgt_len=seq_length
                )
        else:
            # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
            # ourselves in which case we just need to make it broadcastable to all heads.
            extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)

            if use_sdpa_attention_masks and encoder_attention_mask.dim() == 2:
                # Expand the attention mask for SDPA.
                # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
                encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
                    encoder_attention_mask, embedding_output.dtype, tgt_len=seq_length
                )
            else:
                encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )


@auto_docstring(
    custom_intro="""
    XLM-RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.
    """
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
class XLMRobertaForCausalLM(XLMRobertaPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]

    def __init__(self, config):
        super().__init__(config)

        if not config.is_decoder:
            logger.warning("If you want to use `XLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")

        self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
        self.lm_head = XLMRobertaLMHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        self.lm_head.decoder = new_embeddings

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
        r"""
        token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
            >= 2. All the value in this tensor should be always < type_vocab_size.

            [What are token type IDs?](../glossary#token-type-ids)
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
            `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
            ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`

        Example:

        ```python
        >>> from transformers import AutoTokenizer, XLMRobertaForCausalLM, AutoConfig
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
        >>> config = AutoConfig.from_pretrained("FacebookAI/roberta-base")
        >>> config.is_decoder = True
        >>> model = XLMRobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config)

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> prediction_logits = outputs.logits
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if labels is not None:
            use_cache = False

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        lm_loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(prediction_scores.device)
            lm_loss = self.loss_function(
                prediction_scores,
                labels,
                vocab_size=self.config.vocab_size,
                **kwargs,
            )

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((lm_loss,) + output) if lm_loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=lm_loss,
            logits=prediction_scores,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@auto_docstring
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel):
    _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]

    def __init__(self, config):
        super().__init__(config)

        if config.is_decoder:
            logger.warning(
                "If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for "
                "bi-directional self-attention."
            )

        self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
        self.lm_head = XLMRobertaLMHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        self.lm_head.decoder = new_embeddings

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple[torch.Tensor], MaskedLMOutput]:
        r"""
        token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
            >= 2. All the value in this tensor should be always < type_vocab_size.

            [What are token type IDs?](../glossary#token-type-ids)
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(prediction_scores.device)
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead
class XLMRobertaLMHead(nn.Module):
    """Roberta Head for masked language modeling."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
        self.decoder.bias = self.bias

    def forward(self, features, **kwargs):
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)

        # project back to size of vocabulary with bias
        x = self.decoder(x)

        return x

    def _tie_weights(self):
        # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
        # For accelerate compatibility and to not break backward compatibility
        if self.decoder.bias.device.type == "meta":
            self.decoder.bias = self.bias
        else:
            self.bias = self.decoder.bias


@auto_docstring(
    custom_intro="""
    XLM-RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    """
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
        self.classifier = XLMRobertaClassificationHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple[torch.Tensor], SequenceClassifierOutput]:
        r"""
        token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
            >= 2. All the value in this tensor should be always < type_vocab_size.

            [What are token type IDs?](../glossary#token-type-ids)
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@auto_docstring
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
class XLMRobertaForMultipleChoice(XLMRobertaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.roberta = XLMRobertaModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        # Initialize weights and apply final processing
        self.post_init()

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple[torch.Tensor], MultipleChoiceModelOutput]:
        r"""
        input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        token_type_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
            >= 2. All the value in this tensor should be always < type_vocab_size.

            [What are token type IDs?](../glossary#token-type-ids)
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
            num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
            `input_ids` above)
        position_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        flat_inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        outputs = self.roberta(
            flat_input_ids,
            position_ids=flat_position_ids,
            token_type_ids=flat_token_type_ids,
            attention_mask=flat_attention_mask,
            head_mask=head_mask,
            inputs_embeds=flat_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(reshaped_logits.device)
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        if not return_dict:
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss,
            logits=reshaped_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@auto_docstring
# Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
class XLMRobertaForTokenClassification(XLMRobertaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple[torch.Tensor], TokenClassifierOutput]:
        r"""
        token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
            >= 2. All the value in this tensor should be always < type_vocab_size.

            [What are token type IDs?](../glossary#token-type-ids)
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta
class XLMRobertaClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


@auto_docstring
# Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
class XLMRobertaForQuestionAnswering(XLMRobertaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple[torch.Tensor], QuestionAnsweringModelOutput]:
        r"""
        token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
            This parameter can only be used when the model is initialized with `type_vocab_size` parameter with value
            >= 2. All the value in this tensor should be always < type_vocab_size.

            [What are token type IDs?](../glossary#token-type-ids)
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.

    Args:
        x: torch.Tensor x:

    Returns: torch.Tensor
    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
    return incremental_indices.long() + padding_idx


__all__ = [
    "XLMRobertaForCausalLM",
    "XLMRobertaForMaskedLM",
    "XLMRobertaForMultipleChoice",
    "XLMRobertaForQuestionAnswering",
    "XLMRobertaForSequenceClassification",
    "XLMRobertaForTokenClassification",
    "XLMRobertaModel",
    "XLMRobertaPreTrainedModel",
]
