
    hd.                         d Z ddlmZ ddlZddlmZ ddlmZm	Z	 ddl
mZmZmZmZ ddlmZmZ dd	lmZmZ  e       rd
dlmZ  ej.                  e      Z G d ded      ZdefdZd Z G d de      ZdgZy)z
Processor class for Pixtral.
    )UnionN   )BatchFeature)
ImageInputis_valid_image)MultiModalDataProcessingKwargsProcessorMixinUnpack)PreTokenizedInput	TextInput)is_vision_availablelogging   )get_resize_output_image_sizec                   "    e Zd Zdddi ddidZy)PixtralProcessorKwargsF)paddingreturn_mm_token_type_idsreturn_tensorspt)text_kwargsimages_kwargscommon_kwargsN)__name__
__module____qualname__	_defaults     l/var/www/html/eduruby.in/venv/lib/python3.12/site-packages/transformers/models/pixtral/processing_pixtral.pyr   r   *   s%     (-
 d
	Ir    r   F)totalreturnc                 H    t        | t              xr | j                  d      S )Nhttp)
isinstancestr
startswith)vals    r!   is_urlr*   8   s    c3:CNN6$::r    c                 2    t        |       xs t        |       S N)r*   r   )elems    r!   is_image_or_image_urlr.   =   s    $</>$//r    c            
            e Zd ZdZddgZdZdZ	 	 	 	 	 	 	 	 ddedef fdZ	 	 	 	 dd	e	d
e
eeee   ee   f   dee   defdZddZed        Z xZS )PixtralProcessorab  
    Constructs a Pixtral processor which wraps a Pixtral image processor and a Pixtral tokenizer into a single processor.

    [`PixtralProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
    [`~PixtralProcessor.__call__`] and [`~PixtralProcessor.decode`] for more information.

    Args:
        image_processor ([`PixtralImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerFast`], *optional*):
            The tokenizer is a required input.
        patch_size (`int`, *optional*, defaults to 16):
            Patch size from the vision tower.
        spatial_merge_size (`int`, *optional*, defaults to 1):
            The downsampling factor for the spatial merge operation.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
        image_token (`str`, *optional*, defaults to `"[IMG]"`):
            Special token used to denote image location.
        image_break_token (`str`, *optional*, defaults to `"[IMG_BREAK]"`):
            Special token used to denote the end of a line of pixels in an image.
        image_end_token (`str`, *optional*, defaults to `"[IMG_END]"`):
            Special token used to denote the end of an image input.
    image_processor	tokenizerAutoImageProcessorAutoTokenizer
patch_sizespatial_merge_sizec	                    || _         || _        || _        |j                  | j                        | _        || _        || _        |j                  | j                        | _        |j                  | j
                        | _        |j                  | j                        | _        | j                  | j                  | j                  g| _	        t        
| -  |||       y )N)chat_template)r5   r6   image_tokenconvert_tokens_to_idsimage_token_idimage_break_tokenimage_end_tokenimage_break_token_idimage_end_token_id	image_idssuper__init__)selfr1   r2   r5   r6   r8   r9   r<   r=   kwargs	__class__s             r!   rB   zPixtralProcessor.__init___   s     %"4&'==d>N>NO!2.'==d>N>NO$-$C$CDDZDZ$[!"+"A"A$BVBV"W--t/H/H$JaJab)=Qr    imagestextrD   r#   c                 L    | j                   t        fd| j                  j                  i|}| j                  | j
                  z  }| | j                  |fd|i|d   }ni }t        |t              r|g}n.t        |t              st        |d   t              st        d      |}	|j                  d      t        |d         }
g }	g }|D ]  }| j                  |v rt        |
      \  }}||z  }||z  }| j                  g|z  | j                  gz   g|z  }|D cg c]  }|D ]  }|  }}}| j                   |d	<   d
j#                  |      }|j%                  |       |j'                  | j                  dd      }| j                  |v rd|v r)|j)                  d      }|j'                  d|d      }d|v r)|	j%                  |        |d   j)                  dd      }|d   j)                  dd      } | j                  |	fi |d   ddi}| j+                  |	|dg       |rft-        j.                  |d         }t-        j0                  |d         }d|t-        j2                  || j4                        <   |j7                         |d<   t9        i |||      S c c}}w )a  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `list[str]`, `list[list[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
            `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        tokenizer_init_kwargsNr5   r   r   zAInvalid input text. Please provide a string, or a list of stringspixel_valuesimage_sizes z<placeholder>r   r   r   r   Fimage)
modalities	input_idsmm_token_type_ids)datatensor_type)_merge_kwargsr   r2   init_kwargsr5   r6   r1   r&   r'   list	TypeErrorgetiterr9   nextr<   r=   joinappendreplacepop_check_special_mm_tokensnparray
zeros_likeisinr@   tolistr   )rC   rF   rG   audiovideosrD   output_kwargsr5   image_inputsprompt_stringsrK   replace_stringssampleheightwidthnum_height_tokensnum_width_tokensreplace_tokenssublistitemreplace_strr   r   text_inputs	array_idsrQ   s                             r!   __call__zPixtralProcessor.__call__w   s   R +**"
"&.."<"<
 
 __t'>'>>
/4//p:pQ^_nQopLLdC 6DD$'
47C0H_`` N+7|M:;KN O .&&&0$($5MFE(.*(<%',
':$))*-==AWAW@XX&)&*N ;I%]wU\%]Td%]d%]N%])-)=)=N2&"$''."9K#**;7#^^D,<,<oqQF &&&0 &/"1"5"5a"8K#^^O[!LF &/ %%f-%.( '}599:JDQ#0#?#C#CD^`e#f $dnn^i}]7Sidhi%%nkwi%X#[!9:I "k+.F GDEbggi@A/@/G/G/IK+,!@K!@<!@n]]- &^s   J c                 
   i }|t         j                  j                  di       }|j                  |       |j                  dd      xs | j                  j
                  }| j                  | j                  z  }g }|D ]W  \  }}	t        t        j                  ||	df      |d   |d   f||f      \  }
}|
|z  }||z  }|j                  |dz   |z         Y dgt        |      z  }|j                  ||d       t        d	i |S )
a  
        Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.

        Args:
            image_sizes (`list[list[int]]`, *optional*):
                The input sizes formatted as (height, width) per each image.

        Returns:
            `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
            input modalities, along with other useful data.
        Nr   sizer   longest_edge)rx   r5   r   )num_image_tokensnum_image_patchesr   )r   r   rX   updater1   rx   r5   r6   r   r`   zerosr\   lenr   )rC   rK   rD   vision_datar   rx   r5   rz   rl   rm   resized_heightresized_widthrn   ro   r{   s                  r!   _get_num_multimodal_tokensz+PixtralProcessor._get_num_multimodal_tokens   s-    "2<<@@RTUM  ( $$VT2Od6J6J6O6OD4+B+BBJ!!, T0LHHfeQ/0~.^0DE *J71-
 %3j$@!#0J#>  '')9A)=AR(RST "#c+&6 64D[lmn,,,r    c                 l    | j                   j                  }| j                  j                  }||z   dgz   S )NrK   )r2   model_input_namesr1   )rC   tokenizer_input_namesimage_processor_input_namess      r!   r   z"PixtralProcessor.model_input_names   s7     $ @ @&*&:&:&L&L#$'BBm_TTr    )NN   r   Nz[IMG]z[IMG_BREAK]z	[IMG_END])NNNNr,   )r   r   r   __doc__
attributesimage_processor_classtokenizer_classintrB   r   r   r   r   rV   r   r   r   rv   r   propertyr   __classcell__)rE   s   @r!   r0   r0   A   s    2 $[1J0%O "#'#R 	R
  R4 "^bb^b^ I0$y/4HYCZZ[b^ /0b^ 
b^H"-H U Ur    r0   ) r   typingr   numpyr`   feature_extraction_utilsr   image_utilsr   r   processing_utilsr   r	   r
   r   tokenization_utils_baser   r   utilsr   r   image_processing_pixtralr   
get_loggerr   loggerr   boolr*   r.   r0   __all__r   r    r!   <module>r      s      4 5  D 1 F 
		H	%
-U 
;4 ;
0BU~ BUJ 
r    