
    h7                        d dl mZmZ d dlZd dlmZ d dlmZ ddlm	Z	 ddl
mZ ddlmZ ddlmZ dd	lmZ d
dlmZmZmZ d
dlmZ d
dlmZmZmZmZmZmZ  ej>                  e       Z! G d de      Z" G d de      Z#d Z$ G d de      Z% G d de      Z& G d de      Z' G d de      Z( G d de      Z) G d de      Z*g dZ+y)     )CallableOptionalN)TransformersKwargs   )Cache)ALL_ATTENTION_FUNCTIONS)Unpack)logging)deprecate_kwarg   )LlamaPreTrainedModelLlamaRMSNormeager_attention_forward)
OlmoConfig)OlmoAttentionOlmoDecoderLayerOlmoForCausalLM	OlmoModelOlmoRotaryEmbeddingapply_rotary_pos_embc                        e Zd ZdZdZddddddddZdgd	gfd
dgd
gfd
gd
gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )Olmo2Configa  
    This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50304):
            Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Olmo2Model`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50279):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.

    ```python
    >>> from transformers import Olmo2Model, Olmo2Config

    >>> # Initializing a Olmo2 7B style configuration
    >>> configuration = Olmo2Config()

    >>> # Initializing a model from the Olmo2 7B style configuration
    >>> model = Olmo2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    olmo2colwise_reprowwise_repcolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                     t        |   di d|d|d|d|d|d|d|d|d	|	d
|
d|d|d|d|d|d|d|d|| || _        | `y )N
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actmax_position_embeddingsinitializer_range	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_thetarope_scalingattention_biasattention_dropout )super__init__rms_norm_epsclip_qkv)selfr&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r;   kwargs	__class__s                        e/var/www/html/eduruby.in/venv/lib/python3.12/site-packages/transformers/models/olmo2/modular_olmo2.pyr:   zOlmo2Config.__init__z   s    . 	 	
!	
#	
 0	
 0		

 !4	
 !4	
 "	
 %<	
 0	
  	
 &	
 &	
 &	
 !4	
 "	
  &!	
" *#	
$ 0'	
, )M    )i  i   i +      rB   Nsilui   g{Gz?T   Nig  Fg     @NF        gh㈵>)	__name__
__module____qualname____doc__
model_typebase_model_tp_planbase_model_pp_planr:   __classcell__r?   s   @r@   r   r      s    KZ J%2%2%2%2"+ )"+ &(9:#%568IJ!"_$56   $!). .rA   r   c                       e Zd Zd Zy)Olmo2RMSNormc                 "   |j                   }|j                  t        j                        }|j	                  d      j                  dd      }|t        j                  || j                  z         z  }| j                  |z  j                  |      S )Nr   T)keepdim)	dtypetotorchfloat32powmeanrsqrtvariance_epsilonweight)r=   r    input_dtypevariances       r@   forwardzOlmo2RMSNorm.forward   sy    #))%((7 $$Q',,R,>%Ht?T?T4T(UUm+//<<rA   N)rF   rG   rH   r_   r8   rA   r@   rP   rP      s    =rA   rP   c                     | dd| j                   d   dz  f   }| d| j                   d   dz  df   }t        j                  | |fd      S )z*Rotates half the hidden dims of the input..NrR   r   )dim)shaperV   cat)xx1x2s      r@   rotate_halfrg      sZ    	
3"!''"+"""	#B	
3q ""	#B99rc2YB''rA   c                   4    e Zd Zddedee   f fdZ eddd      	 	 ddej                  d	e
ej                  ej                  f   d
eej                     dee   deej                     dee   de
ej                  eej                     f   fd       Z xZS )Olmo2Attentionconfig	layer_idxc                     t         |   ||       t        |j                  | j                  z  |j
                        | _        t        |j                  | j                  z  |j
                        | _        y )Nrk   )	r9   r:   rP   r*   head_dimr;   q_normr+   k_normr=   rj   rk   r?   s      r@   r:   zOlmo2Attention.__init__   s[    95"6#=#=#MvObObc"6#=#=#MvObObcrA   past_key_valuepast_key_values4.58new_nameversionr    position_embeddingsr!   cache_positionr>   returnc                 |   |j                   d d }g |d| j                  }| j                  | j                  |            }	| j	                  | j                  |            }
| j                  |      }|	j                  |      j                  dd      }	|
j                  |      j                  dd      }
|j                  |      j                  dd      }|\  }}t        |	|
||      \  }	}
|'|||d}|j                  |
|| j                  |      \  }
}t        }| j                  j                  dk7  rt        | j                  j                     } || |	|
||f| j                   sdn| j"                  | j$                  d|\  }} |j&                  g |d j)                         }| j+                  |      }||fS )NrR   rD   r   )sincosry   eagerrE   )dropoutscaling)rb   rn   ro   q_projrp   k_projv_projview	transposer   updaterk   r   rj   _attn_implementationr   trainingr7   r   reshape
contiguouso_proj)r=   r    rx   r!   rs   ry   r>   input_shapehidden_shapequery_states
key_statesvalue_statesr}   r|   cache_kwargsattention_interfaceattn_outputattn_weightss                     r@   r_   zOlmo2Attention.forward   s    $))#2.88b8$--8{{4;;}#=>[[]!;<
{{=1#((6@@AF__\2<<QB
#((6@@AF&S#7jRUWZ#[ j&#&snUL'6'='=j,X\XfXfht'u$J(?;;++w6"9$++:Z:Z"[$7	%
  $}}C$2H2HLL	%
 	%
!\ *k));;;;FFHkk+.L((rA   )N)NN)rF   rG   rH   r   r   intr:   r   rV   Tensortupler   
LongTensorr	   r   r_   rM   rN   s   @r@   ri   ri      s    d{ dx} d
 %0A6R ,059-)||-) #5<<#=>-) !.	-)
 "%-) !!1!12-) +,-) 
u||Xell33	4-) S-)rA   ri   c                   >    e Zd Zdedef fdZ eddd      	 	 	 	 	 	 ddej                  d	e	ej                     d
e	ej                     de	e   de	e   de	ej                     de	eej                  ej                  f      dee   dej                  fd       Z xZS )Olmo2DecoderLayerrj   rk   c                     t         |   ||       t        |j                  |j                        | _        t        |j                  |j                        | _        t        ||      | _        | `	y )Nrm   eps)rj   rk   )
r9   r:   rP   r'   r;   post_attention_layernormpost_feedforward_layernormri   	self_attninput_layernormrq   s      r@   r:   zOlmo2DecoderLayer.__init__   s_    95(4V5G5GVM`M`(a%*6v7I7IvObOb*c''vK rA   rr   rs   rt   ru   r    r!   position_idsr/   ry   rx   r>   rz   c                     |}	 | j                   d|||||||d|\  }}
| j                  |      }|	|z   }|}	| j                  |      }| j                  |      }|	|z   }|S )N)r    r!   r   rs   r/   ry   rx   r8   )r   r   mlpr   )r=   r    r!   r   rs   r/   ry   rx   r>   residual_s              r@   r_   zOlmo2DecoderLayer.forward  s     !)4>> 	
')%+) 3	
 	
q 55mD =0 !/77F =0rA   )NNNFNN)rF   rG   rH   r   r   r:   r   rV   r   r   r   r   boolr   r	   r   r_   rM   rN   s   @r@   r   r      s    !{ !s ! %0A6R 2637+/$)59KO|| !. u//0	
 "% D> !!1!12 &eELL%,,,F&GH +, 
 SrA   r   c                       e Zd Zy)Olmo2RotaryEmbeddingNrF   rG   rH   r8   rA   r@   r   r   $      rA   r   c                       e Zd Zy)Olmo2PreTrainedModelNr   r8   rA   r@   r   r   (  r   rA   r   c                   $     e Zd Zdef fdZ xZS )
Olmo2Modelrj   c           	         t         |   |       t        |j                  |j                        | _        t        j                  t        |j                        D cg c]  }t        ||       c}      | _        y c c}w )Nr   )r9   r:   rP   r'   r;   r$   nn
ModuleListranger)   r   r#   rq   s      r@   r:   zOlmo2Model.__init__/  s^      !3!39L9LM	mmCHIaIaCbcivy1c
cs   A=)rF   rG   rH   r   r:   rM   rN   s   @r@   r   r   .  s    
{ 
 
rA   r   c                       e Zd Zy)Olmo2ForCausalLMNr   r8   rA   r@   r   r   8  r   rA   r   )r   r   r   r   ),typingr   r   rV   torch.nnr   transformers.utils.genericr   cache_utilsr   modeling_utilsr   processing_utilsr	   utilsr
   utils.deprecationr   llama.modeling_llamar   r   r   olmo.configuration_olmor   olmo.modeling_olmor   r   r   r   r   r   
get_loggerrF   loggerr   rP   rg   ri   r   r   r   r   r   __all__r8   rA   r@   <module>r      s    %   9   5 &  0 ^ ^ 0  
		H	%L* Lb=< =(4)] 4)t'( 'T	. 		/ 	
 
	 	rA   