
    hQ                        d dl Z d dlmZmZ d dlZd dlmZ ddlmZm	Z	 ddl
mZmZ ddlmZmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZ ddlmZ ddlm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z' ddl(m)Z)  ejT                  e+      Z, G d de      Z- G d de%      Z. G d de#      Z/ G d de       Z0 G d de!      Z1 G d de$      Z2 G d de)      Z3 G d d e"      Z4g d!Z5y)"    N)CallableOptional   )CacheDynamicCache)PretrainedConfiglayer_type_validation)create_causal_mask!create_sliding_window_causal_mask)FlashAttentionKwargs)BaseModelOutputWithPast)rope_config_validation)ALL_ATTENTION_FUNCTIONS)Unpack)TransformersKwargslogging)deprecate_kwarg   )CohereAttentionCohereDecoderLayerCohereForCausalLMCohereLayerNormCoherePreTrainedModelCohereRotaryEmbeddingapply_rotary_pos_embeager_attention_forward)Gemma2Modelc                        e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Ze	d        Z
e
j                  d        Z
 xZS )Cohere2Configa2  
    This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere
    model according to the specified arguments, defining the model architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model.


    Args:
        vocab_size (`int`, *optional*, defaults to 256000):
            Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`CohereModel`]
        hidden_size (`int`, *optional*, defaults to 8192):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 22528):
            Dimension of the MLP representations.
        logit_scale (`float`, *optional*, defaults to 0.0625):
            The scaling factor for the output logits.
        num_hidden_layers (`int`, *optional*, defaults to 40):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 64):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 8192):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 5):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 255001):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        sliding_window (`int`, *optional*, defaults to 4096):
            Size of the sliding window attention context.
        layer_types (`list`, *optional*):
            Attention pattern for each layer.

    ```python
    >>> from transformers import Cohere2Model, Cohere2Config

    >>> # Initializing a Cohere Nextmodel configuration
    >>> configuration = Cohere2Config()

    >>> # Initializing a model from the Cohere2 configuration
    >>> model = Cohere2Model(configuration) # doctest: +SKIP

    >>> # Accessing the model configuration
    >>> configuration = model.config # doctest: +SKIP
    ```
    cohere2past_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    || _         |	| _        || _        || _        || _        || _        || _        ||}|| _        || _        |
| _	        || _
        || _        || _        || _        || _        || _        || _        || _        ||z  | _        t'        |        t)        | T  d||||d| |j-                  dd      | _        | j"                  Wt1        | dd      | _        t3        | j
                        D cg c]!  }t5        |dz   | j.                  z        rdnd# c}| _        t7        | j"                         y c c}w )N)pad_token_idbos_token_ideos_token_idtie_word_embeddingssliding_window_pattern      sliding_attentionfull_attention )
vocab_sizemax_position_embeddingshidden_sizelogit_scaleintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangelayer_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutsliding_windowlayer_typeshead_dimr   super__init__get_sliding_window_patterngetattrrangeboolr	   )selfr6   r8   r:   r9   r;   r<   r=   r>   r7   r?   r@   rA   r,   r-   r.   r/   rB   rC   rD   rE   rF   rG   kwargsi	__class__s                            i/var/www/html/eduruby.in/venv/lib/python3.12/site-packages/transformers/models/cohere2/modular_cohere2.pyrJ   zCohere2Config.__init__   sm   4 %'>$&&!2!2#6  &"5#6 $!2,"$(,!2,&#':: 	t$ 	
%%% 3		

 	
 (.zz2JA'N$#+249QST+UD( t556  (,QUd6R6R,R'S#Yii D 	d../	 s   9&D=c                 N    t        j                  dt               | j                  S )NzTThe `sliding_window_pattern` attribute is deprecated and will be removed in v4.55.0.)warningswarnFutureWarningrL   )rP   s    rT   r0   z$Cohere2Config.sliding_window_pattern   s"    b	
 +++    c                     || _         y N)rL   )rP   values     rT   r0   z$Cohere2Config.sliding_window_pattern  s
    ',$rY   )i      i X  g      ?(   @   Nsilur]   g{Gz?gh㈵>Tr      i Tg     @NF        i   N)__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planrJ   propertyr0   setter__classcell__rS   s   @rT   r   r   0   s    n` J#4"5%.%.%.%."+ )"+ &(9:#%568IJ!"_$56   $ /I0V , , ""- #-rY   r   c                       e Zd Zy)Cohere2RotaryEmbeddingNrc   rd   re   r5   rY   rT   rp   rp   
      rY   rp   c                       e Zd Zy)Cohere2LayerNormNrq   r5   rY   rT   rt   rt     rr   rY   rt   c                   N   e Zd ZdZddedee   fdZ eddd	      	 	 dd
e	j                  dee	j                  e	j                  f   dee	j                     dee   dee	j                     dee   dee	j                  ee	j                     eee	j                        f   fd       Zy)Cohere2Attentionz=Multi-headed attention from 'Attention Is All You Need' paperNconfig	layer_idxc                    t         j                  j                  |        || _        || _        t        |d|j                  |j                  z        | _        |j                  |j                  z  | _
        | j                  dz  | _        |j                  | _        d| _        |j                  |   dk(  r|j                  nd | _        t        j                   |j                  |j                  | j                  z  |j"                        | _        t        j                   |j                  |j                  | j                  z  |j"                        | _        t        j                   |j                  |j                  | j                  z  |j"                        | _        t        j                   |j                  | j                  z  |j                  |j"                        | _        y )NrH   g      Tr3   )bias)nnModulerJ   rw   rx   rM   r8   r<   rH   r=   num_key_value_groupsscalingrE   	is_causalrG   rF   LinearrD   q_projk_projv_projo_proj)rP   rw   rx   s      rT   rJ   zCohere2Attention.__init__  sw   
		4 "
F4F4F&JdJd4de$*$>$>&B\B\$\!}}d*!'!9!97=7I7I)7TXk7kf33quii : :T]] JQWQfQf
 ii : :T]] JQWQfQf
 ii : :T]] JQWQfQf
 ii&&68J8JQWQfQf
rY   past_key_valuer!   4.58new_nameversionr&   position_embeddingsr'   cache_positionrQ   returnc                 b   |j                   d d }g |d| j                  }| j                  |      j                  |      j	                  dd      }	| j                  |      j                  |      j	                  dd      }
| j                  |      j                  |      j	                  dd      }|\  }}| j                  t        |	|
||      \  }	}
|'|||d}|j                  |
|| j                  |      \  }
}t        }| j                  j                  dk7  rt        | j                  j                     } || |	|
||f| j                  sdn| j                   | j"                  | j                  d|\  }} |j$                  g |d j'                         }| j)                  |      }||fS )Nr2   r   )sincosr   eagerrb   )dropoutr~   rF   )shaperH   r   view	transposer   r   rF   r   updaterx   r   rw   _attn_implementationr   trainingrE   r~   reshape
contiguousr   )rP   r&   r   r'   r!   r   rQ   input_shapehidden_shapequery_states
key_statesvalue_statesr   r   cache_kwargsattention_interfaceattn_outputattn_weightss                     rT   forwardzCohere2Attention.forward-  s    $))#2.88b8$--8{{=166|DNNqRST[[/44\BLLQPQR
{{=166|DNNqRST&S*';L*VY[^'_$L*&#&snUL'6'='=j,X\XfXfht'u$J(?;;++w6"9$++:Z:Z"[$7
%
  $}}C$2H2HLL..
%
 
%
!\ *k));;;;FFHkk+.L((rY   r[   )NN)rc   rd   re   rf   r   r   intrJ   r   torchTensortupler   
LongTensorr   r   r   r5   rY   rT   rv   rv     s    G
} 
# 
0 %0A6R ,059*)||*) #5<<#=>*) !.	*)
 "%*) !!1!12*) -.*) 
u||Xell3XeELL>Q5RR	S*) S*)rY   rv   c                   X    e Zd Zdedef fdZ eddd      	 	 	 	 ddej                  d	e	ej                  ej                  f   d
e
ej                     de
e   de
e   de
ej                     dee   de	ej                   e
e	ej                   ej                   f      f   fd       Z xZS )Cohere2DecoderLayerrw   rx   c                 N    t         |   ||       |j                  |   | _        y r[   )rI   rJ   rG   attention_type)rP   rw   rx   rS   s      rT   rJ   zCohere2DecoderLayer.__init__\  s%    +$00;rY   r   r!   r   r   r&   r   r'   rA   r   rQ   r   c           
          |}| j                  |      } | j                  d||||||d|\  }	}
| j                  |      }||	z   |z   }|S )N)r&   r   r'   r!   rA   r   r5   )input_layernorm	self_attnmlp)rP   r&   r   r'   r!   rA   r   rQ   residualhidden_states_attention_hidden_states_mlps               rT   r   zCohere2DecoderLayer.forward`  sx     !,,];%3T^^ &
' 3)+)&
 &
" !HH]3 #::=NNrY   )NNFN)rc   rd   re   r   r   rJ   r   r   r   r   r   r   rO   r   r   r   FloatTensorr   rm   rn   s   @rT   r   r   [  s    <} < < %0A6R
 26+/$)59|| #5<<#=> !.	
 "% D> !!1!12 -. 
u  (51B1BEDUDU1U+V"WW	X SrY   r   c                       e Zd ZU eed<   y)Cohere2PreTrainedModelrw   N)rc   rd   re   r   __annotations__r5   rY   rT   r   r   |  s    rY   r   c                        e Zd Zdef fdZ	 	 	 	 	 	 	 ddeej                     deej                     deej                     dee	   deej                     dee   d	eej                     d
ee   defdZ xZS )Cohere2Modelrw   c                     t         |   |       t        |j                  |j                        | _        t        |      | _        y )N)r8   epsrw   )rI   rJ   rt   r8   r@   r*   rp   
rotary_emb)rP   rw   rS   s     rT   rJ   zCohere2Model.__init__  s6     $&2D2D6K`K`a	0?rY   r$   r'   position_idsr!   r%   rA   r   rQ   r   c           
         |d u |d uz  rt        d      || j                  |      }|r$|"| j                  st        | j                        }|F||j                         nd}	t        j                  |	|	|j                  d   z   |j                        }||j                  d      }t        |x}
t              s*| j                  |||||d}t        d
i |t        d
i |d}
|}| j                  ||      }| j                   D ]  } ||f||
|j"                     |||d|}  | j%                  |      }t'        ||	      S )Nz:You must specify exactly one of input_ids or inputs_embedsr   r   r2   )device)rw   input_embedsr'   r   r!   r   )r4   r3   )r   r'   r!   rA   r   )last_hidden_stater!   r5   )
ValueErrorr(   r   r   rw   get_seq_lengthr   aranger   r   	unsqueeze
isinstancedictr
   r   r   r)   r   r*   r   )rP   r$   r'   r   r!   r%   rA   r   rQ   past_seen_tokenscausal_mask_mappingmask_kwargsr&   r   decoder_layers                  rT   r   zCohere2Model.forward  s    -t";<YZZ  --i8M0*$++>O!CRC^==?de"\\ "2]5H5H5K"KTaThThN )33A6L?-F++ -"0"0#2 ,K #5"C{"C%F%U%U#
 &"oom\J![[ 		M)$72=3O3OP /#- M		 		-0&++
 	
rY   )NNNNNNN)rc   rd   re   r   rJ   r   r   r   r   r   r   rO   r   r   r   r   rm   rn   s   @rT   r   r     s    @} @ 151537+/59$(59<
E,,-<
 !.<
 u//0	<

 "%<
   1 12<
 D><
 !!1!12<
 +,<
 
!<
rY   r   c                       e Zd Zy)Cohere2ForCausalLMNrq   r5   rY   rT   r   r     rr   rY   r   )r   r   r   r   )6rV   typingr   r   r   torch.nnr{   cache_utilsr   r   configuration_utilsr   r	   masking_utilsr
   r   modeling_flash_attention_utilsr   modeling_outputsr   modeling_rope_utilsr   modeling_utilsr   processing_utilsr   utilsr   r   utils.deprecationr   cohere.modeling_coherer   r   r   r   r   r   r   r   gemma2.modeling_gemma2r   
get_loggerrc   loggerr   rp   rt   rv   r   r   r   r   __all__r5   rY   rT   <module>r      s      %   . J R B 7 9 5 & 0 0	 	 	 1 
		H	%W-$ W-t	2 		 	F) F)R, B2 B
; B
J	* 	 \rY   