
    hA                        d dl mZmZ d dlZd dlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZmZ d	d
lmZ d	dlmZmZmZmZmZmZmZmZmZmZ d	dlmZ  ej:                  e      Z G d de      Z  G d de      Z! G d de      Z" G d de      Z# G d de      Z$ G d de      Z% G d de      Z& G d de      Z' G d de      Z( G d d e      Z)g d!Z*y)"    )CallableOptionalN)nn   )Cache)ALL_ATTENTION_FUNCTIONS)Unpack)TransformersKwargslogging   )LlamaConfig)
LlamaAttentionLlamaDecoderLayerLlamaForCausalLMLlamaForTokenClassification
LlamaModelLlamaPreTrainedModelLlamaRMSNormLlamaRotaryEmbeddingapply_rotary_pos_embeager_attention_forward)NemotronMLPc                   n     e Zd ZdZdZddddddddZdd	d
dddddddddddddddddddddf fd	Z xZS )ApertusConfiga  
    This is the configuration class to store the configuration of a [`ApertusModel`]. It is used to instantiate a Apertus
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Apertus-8B.
    e.g. [swiss-ai/Apertus-8B](https://huggingface.co/swiss-ai/Apertus-8B)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 131072):
            Vocabulary size of the Apertus model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ApertusModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"xielu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 65536):
            The maximum sequence length that this model might ever be used with. Apertus supports up to 65536 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 3):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 12000000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import ApertusModel, ApertusConfig

    >>> # Initializing a Apertus-8B style configuration
    >>> configuration = ApertusConfig()

    >>> # Initializing a model from the Apertus-8B style configuration
    >>> model = ApertusModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```apertuscolwise_reprowwise_repcolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projzlayers.*.mlp.gate_proji   i   i 8      Nxielui   g{Gz?gh㈵>Tr      r   Fg    `fAllama3g       @i    g      ?g      @)	rope_typefactor original_max_position_embeddingslow_freq_factorhigh_freq_factor        c                     t        |   di d|d|d|d|d|d|d|d|d	|	d
|
d|d|d|d|d|d|d|d|d|| | `| `| `y )N
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actmax_position_embeddingsinitializer_rangerms_norm_eps	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_thetarope_scalingattention_biasattention_dropout )super__init__pretraining_tpmlp_biashead_dim)selfr+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   kwargs	__class__s                        i/var/www/html/eduruby.in/venv/lib/python3.12/site-packages/transformers/models/apertus/modular_apertus.pyr@   zApertusConfig.__init__   s    : 	 	
!	
#	
 0	
 0		

 !4	
 !4	
 "	
 %<	
 0	
 &	
  	
 &	
 &	
 &	
 !4	
  "!	
" &#	
$ *%	
& 0)	
, MM    )__name__
__module____qualname____doc__
model_typebase_model_tp_planr@   __classcell__rF   s   @rG   r   r   ,   s    hT J%2%2%2%2 )"+"+   %!!04" #
 55 5rH   r   c                        e Zd Z fdZ xZS )
ApertusMLPc                     t         |           t        j                  | j                  | j
                  d      | _        t        j                  | j
                  | j                  d      | _        y )NF)bias)r?   r@   r   Linearr,   r-   up_proj	down_proj)rD   configrF   s     rG   r@   zApertusMLP.__init__   sP    yy!1!143I3IPUV4#9#94;K;KRWXrH   )rI   rJ   rK   r@   rO   rP   s   @rG   rR   rR      s    Y YrH   rR   c                       e Zd Zy)ApertusRMSNormNrI   rJ   rK   r>   rH   rG   rZ   rZ          rH   rZ   c                       e Zd Zy)ApertusRotaryEmbeddingNr[   r>   rH   rG   r^   r^      r\   rH   r^   c                       e Zd Zddedee   f fdZ	 	 ddej                  de	ej                  ej                  f   deej                     dee
   deej                     d	ee   d
e	ej                  ej                  f   fdZ xZS )ApertusAttentionrX   	layer_idxc                     t         |   ||       t        | j                  |j                        | _        t        | j                  |j                        | _        y N)r?   r@   rZ   rC   r4   q_normk_normrD   rX   ra   rF   s      rG   r@   zApertusAttention.__init__   sB    +$T]]F4G4GH$T]]F4G4GHrH   hidden_statesposition_embeddingsattention_maskpast_key_valuescache_positionrE   returnc                 x   |j                   d d }g |d| j                  }| j                  |      j                  |      j	                  dd      }	| j                  |      j                  |      j	                  dd      }
| j                  |      j                  |      j	                  dd      }| j                  |	      }	| j                  |
      }
|\  }}t        |	|
||      \  }	}
|'|||d}|j                  |
|| j                  |      \  }
}t        }| j                  j                  dk7  rt        | j                  j                     } || |	|
||f| j                   sdn| j"                  | j$                  d|\  }} |j&                  g |d j)                         }| j+                  |      }||fS )Nr"   r   )sincosrk   eagerr)   )dropoutscaling)shaperC   q_projview	transposek_projv_projrd   re   r   updatera   r   rX   _attn_implementationr   trainingr=   rs   reshape
contiguouso_proj)rD   rg   rh   ri   rj   rk   rE   input_shapehidden_shapequery_states
key_statesvalue_statesrp   ro   cache_kwargsattention_interfaceattn_outputattn_weightss                     rG   forwardzApertusAttention.forward   s    $))#2.88b8$--8{{=166|DNNqRST[[/44\BLLQPQR
{{=166|DNNqRST{{<0[[,
&S#7jRUWZ#[ j&#&snUL'6'='=j,X\XfXfht'u$J(?;;++w6"9$++:Z:Z"[$7	%
  $}}C$2H2HLL	%
 	%
!\ *k));;;;FFHkk+.L((rH   rc   )NN)rI   rJ   rK   r   r   intr@   torchTensortupler   
LongTensorr	   r
   r   rO   rP   s   @rG   r`   r`      s    I} I# I ,059*)||*) #5<<#=>*) !.	*)
 "%*) !!1!12*) +,*) 
u||U\\)	**)rH   r`   c                   (    e Zd Zdedef fdZ	 	 	 	 	 	 ddej                  deej                     deej                     dee
   dee   d	eej                     d
eeej                  ej                  f      dee   deej                     fdZ xZS )ApertusDecoderLayerrX   ra   c                     t         |   ||       t        |j                  |j                        | _        t        |j                  |j                        | _        | `| `y )N)eps)	r?   r@   rZ   r,   r4   attention_layernormfeedforward_layernorminput_layernormpost_attention_layernormrf   s      rG   r@   zApertusDecoderLayer.__init__  sT    +#1&2D2D&J]J]#^ %3F4F4FFL_L_%`" )rH   rg   ri   position_idsrj   r5   rk   rh   rE   rl   c                     |}	| j                  |      } | j                  d|||||||d|\  }}
|	|z   }|}	| j                  |      }| j                  |      }|	|z   }|S )N)rg   ri   r   rj   r5   rk   rh   r>   )r   	self_attnr   mlp)rD   rg   ri   r   rj   r5   rk   rh   rE   residual_s              rG   r   zApertusDecoderLayer.forward%  s     !00?)4>> 	
')%+) 3	
 	
q !=0 !22=A/ =0rH   )NNNFNN)rI   rJ   rK   r   r   r@   r   r   r   r   r   boolr   r	   r
   r   rO   rP   s   @rG   r   r     s    *} * * 2637+/$)59KO|| !. u//0	
 "% D> !!1!12 &eELL%,,,F&GH +, 
u||	rH   r   c                       e Zd Zy)ApertusPreTrainedModelNr[   r>   rH   rG   r   r   F  r\   rH   r   c                       e Zd Zy)ApertusModelNr[   r>   rH   rG   r   r   J  r\   rH   r   c                        e Zd Z fdZ xZS )ApertusForCausalLMc                 "    t        |   di |S )an  
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, ApertusForCausalLM

        >>> model = ApertusForCausalLM.from_pretrained("swiss-ai/Apertus-8B")
        >>> tokenizer = AutoTokenizer.from_pretrained("swiss-ai/Apertus-8B")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```r>   )r?   r   )rD   super_kwargsrF   s     rG   r   zApertusForCausalLM.forwardO  s    . w...rH   )rI   rJ   rK   r   rO   rP   s   @rG   r   r   N  s    / /rH   r   c                       e Zd Zy)ApertusForTokenClassificationNr[   r>   rH   rG   r   r   i  r\   rH   r   )r   r   r   r   r   )+typingr   r   r   r   cache_utilsr   modeling_utilsr   processing_utilsr	   utilsr
   r   llama.configuration_llamar   llama.modeling_llamar   r   r   r   r   r   r   r   r   r   nemotron.modeling_nemotronr   
get_loggerrI   loggerr   rR   rZ   r^   r`   r   r   r   r   r   __all__r>   rH   rG   <module>r      s     &     5 & 0 3   5 
		H	%kK k\Y Y	\ 		1 	0)~ 0)f'+ 'T	1 		: 	/) /6	$? 	rH   