
    h                     0   d dl Z d dlZd dlmZ d dlmZ d dlmZ d dlm	Z	m
Z
 d dlZd dlZd dlmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZ dd	lmZmZm Z m!Z!m"Z"m#Z#  e       rd dl$Z%d dl&Z% ejN                   ejN                  e%jP                        jR                         ejN                  d
      k\  re%jT                  jV                  Z,ne%jT                  Z, e       rd dl-m.Z. e,j^                   e       re.j`                  ne.j^                  e,jb                  e.jb                  e,jd                  e.jd                  e,jf                  e.jf                  e,jh                  e.jh                  e,jj                  e.jj                  iZ6ni Z6 e       rd dl7Z7 ejp                  e9      Z:e
dejv                  de<d   e<ejv                     e<d   f   Z= G d de      Z> G d de      Z? G d de      Z@eAeBe
eCeBe<eA   f   f   ZDd ZE G d de      ZFd ZGd ZHde<fdZId ZJd ZKd ZLdejv                  deMfd ZNdVd!eCde<e=   fd"ZO	 dVde
e<e=   e=f   d!eCde=fd#ZP	 dVde
e<e=   e=f   d!eCde=fd$ZQdejv                  fd%ZR	 dWdejv                  d&e	e
eCeSeCd'f   f      de>fd(ZT	 dWdejv                  d)e	e
e>eBf      deCfd*ZUdWdejv                  d+e>deSeCeCf   fd,ZVd-eSeCeCf   d.eCd/eCdeSeCeCf   fd0ZWd1eAeBe
e<eSf   f   deMfd2ZXd1eAeBe
e<eSf   f   deMfd3ZYd4eeAeBe
e<eSf   f      deMfd5ZZd4eeAeBe
e<eSf   f      deMfd6Z[dWde
eBdf   d7e	e\   ddfd8Z]	 dWde
e<eSeBdf   d7e	e\   de
de<d   e<e<d      f   fd9Z^	 	 	 	 	 	 	 	 	 	 	 	 	 dXd:e	eM   d;e	e\   d<e	eM   d=e	e
e\e<e\   f      d>e	e
e\e<e\   f      d?e	eM   d@e	eC   dAe	eM   dBe	eAeBeCf      dCe	eM   dDe	eAeBeCf      dEe	dF   dGe	dH   fdIZ_ G dJ dK      Z`dLe?dMeSe?d'f   d4e<eA   ddfdNZadOe<eB   dPe<eB   fdQZb edRS       G dT dU             Zcy)Y    N)Iterable)	dataclass)BytesIO)OptionalUnion)version   )ExplicitEnumis_jax_tensoris_numpy_arrayis_tf_tensoris_torch_availableis_torch_tensoris_torchvision_availableis_torchvision_v2_availableis_vision_availableloggingrequires_backendsto_numpy)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STDIMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDOPENAI_CLIP_MEANOPENAI_CLIP_STDz9.1.0)InterpolationModezPIL.Image.Imageztorch.Tensorc                       e Zd ZdZdZy)ChannelDimensionchannels_firstchannels_lastN)__name__
__module____qualname__FIRSTLAST     V/var/www/html/eduruby.in/venv/lib/python3.12/site-packages/transformers/image_utils.pyr   r   X   s    EDr'   r   c                       e Zd ZdZdZy)AnnotationFormatcoco_detectioncoco_panopticN)r!   r"   r#   COCO_DETECTIONCOCO_PANOPTICr&   r'   r(   r*   r*   ]   s    %N#Mr'   r*   c                   d    e Zd Zej                  j
                  Zej                  j
                  Zy)AnnotionFormatN)r!   r"   r#   r*   r-   valuer.   r&   r'   r(   r0   r0   b   s$    %44::N$2288Mr'   r0   c                 b    t               xr$ t        | t        j                  j                        S N)r   
isinstancePILImageimgs    r(   is_pil_imager9   j   s     EZSYY__%EEr'   c                        e Zd ZdZdZdZdZdZy)	ImageTypepillowtorchnumpy
tensorflowjaxN)r!   r"   r#   r5   TORCHNUMPY
TENSORFLOWJAXr&   r'   r(   r;   r;   n   s    
CEEJ
Cr'   r;   c                 >   t        |       rt        j                  S t        |       rt        j                  S t        |       rt        j                  S t        |       rt        j                  S t        |       rt        j                  S t        dt        |              )NzUnrecognized image type )r9   r;   r5   r   rA   r   rB   r   rC   r   rD   
ValueErrortypeimages    r(   get_image_typerJ   v   su    E}}ueE###U}}
/U}=
>>r'   c                     t        |       xs2 t        |       xs% t        |       xs t        |       xs t	        |       S r3   )r9   r   r   r   r   r7   s    r(   is_valid_imagerL      s8    vs 3vs7Kv|\_O`vdqrudvvr'   imagesc                 .    | xr t        d | D              S )Nc              3   2   K   | ]  }t        |        y wr3   )rL   ).0rI   s     r(   	<genexpr>z*is_valid_list_of_images.<locals>.<genexpr>   s     DE./D   all)rM   s    r(   is_valid_list_of_imagesrU      s    DcDVDDDr'   c                 8   t        | d   t              r| D cg c]  }|D ]  }|  c}}S t        | d   t        j                        rt        j                  | d      S t        | d   t
        j                        rt        j                  | d      S y c c}}w )Nr   axis)dim)r4   listnpndarrayconcatenater=   Tensorcat)
input_listsublistitems      r(   concatenate_listrc      s~    *Q-&$.C7C4CCC	JqM2::	.~~jq11	JqM5<<	0yy++ 
1 Ds   Bc                 r    t        | t        t        f      r| D ]  }t        |      r y yt	        |       syy)NFT)r4   rZ   tuplevalid_imagesrL   )imgsr8   s     r(   rf   rf      s?    $u& 	C$	  D!r'   c                 L    t        | t        t        f      rt        | d         S y)Nr   F)r4   rZ   re   rL   r7   s    r(   
is_batchedri      s"    #e}%c!f%%r'   rI   returnc                     | j                   t        j                  k(  ryt        j                  |       dk\  xr t        j                  |       dk  S )zV
    Checks to see whether the pixel values have already been rescaled to [0, 1].
    Fr   r	   )dtyper[   uint8minmaxrH   s    r(   is_scaled_imagerp      s>     {{bhh 66%=A4"&&-1"44r'   expected_ndimsc           	      (   t        |       r| S t        |       r| gS t        |       rU| j                  |dz   k(  rt	        |       } | S | j                  |k(  r| g} | S t        d|dz    d| d| j                   d      t        dt        |        d      )a  
    Ensure that the output is a list of images. If the input is a single image, it is converted to a list of length 1.
    If the input is a batch of images, it is converted to a list of images.

    Args:
        images (`ImageInput`):
            Image of images to turn into a list of images.
        expected_ndims (`int`, *optional*, defaults to 3):
            Expected number of dimensions for a single input image. If the input image has a different number of
            dimensions, an error is raised.
    r	   z%Invalid image shape. Expected either z or z dimensions, but got z dimensions.ztInvalid image type. Expected either PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray, but got .)ri   r9   rL   ndimrZ   rF   rG   )rM   rq   s     r(   make_list_of_imagesru      s     & Fxf;;.1,,&\F  [[N*XF 	 78J7K4P^O_ `KK=. 
 	  $V~Q	0 r'   c                 H   t        | t        t        f      r=t        d | D              r+t        d | D              r| D cg c]  }|D ]  }|  c}}S t        | t        t        f      r[t	        |       rPt        | d         s| d   j                  |k(  r| S | d   j                  |dz   k(  r| D cg c]  }|D ]  }|  c}}S t        |       r:t        |       s| j                  |k(  r| gS | j                  |dz   k(  rt        |       S t        d|        c c}}w c c}}w )a  
    Ensure that the output is a flat list of images. If the input is a single image, it is converted to a list of length 1.
    If the input is a nested list of images, it is converted to a flat list of images.
    Args:
        images (`Union[list[ImageInput], ImageInput]`):
            The input image.
        expected_ndims (`int`, *optional*, defaults to 3):
            The expected number of dimensions for a single input image.
    Returns:
        list: A list of images or a 4d array of images.
    c              3   H   K   | ]  }t        |t        t        f        y wr3   r4   rZ   re   rP   images_is     r(   rQ   z+make_flat_list_of_images.<locals>.<genexpr>        K
8dE]3K    "c              3   2   K   | ]  }t        |        y wr3   rU   ry   s     r(   rQ   z+make_flat_list_of_images.<locals>.<genexpr>        Ih'1IrR   r   r	   z*Could not make a flat list of images from 	r4   rZ   re   rT   rU   r9   rt   rL   rF   )rM   rq   img_listr8   s       r(   make_flat_list_of_imagesr      s   " 	6D%=)KFKKI&II$*?h?s???&4-(-DV-Lq	"fQinn&FM!9>>^a//(.CH(C3CCCCCf6;;.#@8O;;.1,,<
A&J
KK @ Ds    D1Dc                    t        | t        t        f      r&t        d | D              rt        d | D              r| S t        | t        t        f      r\t	        |       rQt        | d         s| d   j                  |k(  r| gS | d   j                  |dz   k(  r| D cg c]  }t        |       c}S t        |       r<t        |       s| j                  |k(  r| ggS | j                  |dz   k(  rt        |       gS t        d      c c}w )as  
    Ensure that the output is a nested list of images.
    Args:
        images (`Union[list[ImageInput], ImageInput]`):
            The input image.
        expected_ndims (`int`, *optional*, defaults to 3):
            The expected number of dimensions for a single input image.
    Returns:
        list: A list of list of images or a list of 4d array of images.
    c              3   H   K   | ]  }t        |t        t        f        y wr3   rx   ry   s     r(   rQ   z-make_nested_list_of_images.<locals>.<genexpr>  r{   r|   c              3   2   K   | ]  }t        |        y wr3   r~   ry   s     r(   rQ   z-make_nested_list_of_images.<locals>.<genexpr>  r   rR   r   r	   z]Invalid input type. Must be a single image, a list of images, or a list of batches of images.r   )rM   rq   rI   s      r(   make_nested_list_of_imagesr      s      	6D%=)KFKKI&II &4-(-DV-Lq	"fQinn&F8O!9>>^a//-34EDK44 f6;;.#@H:;;.1,,L>!
t
uu 5s   Dc                     t        |       st        dt        |              t               r9t	        | t
        j                  j                        rt        j                  |       S t        |       S )NzInvalid image type: )
rL   rF   rG   r   r4   r5   r6   r[   arrayr   r7   s    r(   to_numpy_arrayr   &  sP    #/S	{;<<C!Axx}C=r'   num_channels.c                 *   ||nd}t        |t              r|fn|}| j                  dk(  rd\  }}nB| j                  dk(  rd\  }}n-| j                  dk(  rd\  }}nt        d| j                         | j                  |   |v rD| j                  |   |v r3t
        j                  d| j                   d	       t        j                  S | j                  |   |v rt        j                  S | j                  |   |v rt        j                  S t        d
      )a[  
    Infers the channel dimension format of `image`.

    Args:
        image (`np.ndarray`):
            The image to infer the channel dimension of.
        num_channels (`int` or `tuple[int, ...]`, *optional*, defaults to `(1, 3)`):
            The number of channels of the image.

    Returns:
        The channel dimension of the image.
    r	      r   )r            )r   r   z(Unsupported number of image dimensions: z4The channel dimension is ambiguous. Got image shape z. Assuming channels are the first dimension. Use the [input_data_format](https://huggingface.co/docs/transformers/main/internal/image_processing_utils#transformers.image_transforms.rescale.input_data_format) parameter to assign the channel dimension.z(Unable to infer channel dimension format)
r4   intrt   rF   shapeloggerwarningr   r$   r%   )rI   r   	first_dimlast_dims       r(   infer_channel_dimension_formatr   /  s    $0#;<L&0s&CL?LzzQ"	8	q"	8	q"	8CEJJ<PQQ{{9-%++h2G<2WB5;;-  PJ  K	
  %%%	Y	<	/%%%	X	,	.$$$
?
@@r'   input_data_formatc                     |t        |       }|t        j                  k(  r| j                  dz
  S |t        j                  k(  r| j                  dz
  S t        d|       )a  
    Returns the channel dimension axis of the image.

    Args:
        image (`np.ndarray`):
            The image to get the channel dimension axis of.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format of the image. If `None`, will infer the channel dimension from the image.

    Returns:
        The channel dimension axis of the image.
    r   r	   Unsupported data format: )r   r   r$   rt   r%   rF   )rI   r   s     r(   get_channel_dimension_axisr   V  sd      :5A,222zzA~	.33	3zzA~
01B0CD
EEr'   channel_dimc                     |t        |       }|t        j                  k(  r| j                  d   | j                  d   fS |t        j                  k(  r| j                  d   | j                  d   fS t        d|       )a  
    Returns the (height, width) dimensions of the image.

    Args:
        image (`np.ndarray`):
            The image to get the dimensions of.
        channel_dim (`ChannelDimension`, *optional*):
            Which dimension the channel dimension is in. If `None`, will infer the channel dimension from the image.

    Returns:
        A tuple of the image's height and width.
    r   )r   r   r$   r   r%   rF   )rI   r   s     r(   get_image_sizer   n  s{     4U;&,,,{{2B//	(--	-{{2B//4[MBCCr'   
image_size
max_height	max_widthc                 x    | \  }}||z  }||z  }t        ||      }t        ||z        }t        ||z        }	||	fS )a  
    Computes the output image size given the input image and the maximum allowed height and width. Keep aspect ratio.
    Important, even if image_height < max_height and image_width < max_width, the image will be resized
    to at least one of the edges be equal to max_height or max_width.

    For example:
        - input_size: (100, 200), max_height: 50, max_width: 50 -> output_size: (25, 50)
        - input_size: (100, 200), max_height: 200, max_width: 500 -> output_size: (200, 400)

    Args:
        image_size (`tuple[int, int]`):
            The image to resize.
        max_height (`int`):
            The maximum allowed height.
        max_width (`int`):
            The maximum allowed width.
    )rn   r   )
r   r   r   heightwidthheight_scalewidth_scale	min_scale
new_height	new_widths
             r(   #get_image_size_for_max_height_widthr     sV    , MFE&Le#KL+.IVi'(JEI%&Iy  r'   
annotationc                     t        | t              rId| v rEd| v rAt        | d   t        t        f      r(t	        | d         dk(  st        | d   d   t              ryy)Nimage_idannotationsr   TFr4   dictrZ   re   lenr   s    r(   "is_valid_annotation_coco_detectionr     s`    :t$*$Z'z-04-@ 
=)*a/:j>WXY>Z\`3a r'   c                     t        | t              rMd| v rId| v rEd| v rAt        | d   t        t        f      r(t	        | d         dk(  st        | d   d   t              ryy)Nr   segments_info	file_namer   TFr   r   s    r(   !is_valid_annotation_coco_panopticr     sh    :t$*$z):%z/2T5MB 
?+,1Z
?@[\]@^`d5e r'   r   c                 &    t        d | D              S )Nc              3   2   K   | ]  }t        |        y wr3   )r   rP   anns     r(   rQ   z3valid_coco_detection_annotations.<locals>.<genexpr>  s     N31#6NrR   rS   r   s    r(    valid_coco_detection_annotationsr     s    N+NNNr'   c                 &    t        d | D              S )Nc              3   2   K   | ]  }t        |        y wr3   )r   r   s     r(   rQ   z2valid_coco_panoptic_annotations.<locals>.<genexpr>  s     M#05MrR   rS   r   s    r(   valid_coco_panoptic_annotationsr     s    MMMMr'   timeoutc                    t        t        dg       t        | t              r| j	                  d      s| j	                  d      rHt
        j                  j                  t        t        j                  | |      j                              } nt        j                  j                  |       r t
        j                  j                  |       } n| j	                  d      r| j                  d      d   } 	 t!        j"                  | j%                               }t
        j                  j                  t        |            } n2t        | t
        j                  j                        r| } nt+        d      t
        j,                  j/                  |       } | j1                  d      } | S # t&        $ r}t)        d|  d	|       d
}~ww xY w)a3  
    Loads `image` to a PIL Image.

    Args:
        image (`str` or `PIL.Image.Image`):
            The image to convert to the PIL Image format.
        timeout (`float`, *optional*):
            The timeout value in seconds for the URL request.

    Returns:
        `PIL.Image.Image`: A PIL Image.
    visionzhttp://zhttps://r   zdata:image/,r	   zIncorrect image source. Must be a valid URL starting with `http://` or `https://`, a valid path to an image file, or a base64 encoded string. Got z. Failed with NzuIncorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image.RGB)r   
load_imager4   str
startswithr5   r6   openr   requestsgetcontentospathisfilesplitbase64decodebytesencode	ExceptionrF   	TypeErrorImageOpsexif_transposeconvert)rI   r   b64es       r(   r   r     sv    j8*-%I&%*:*::*F IINN78<<w+O+W+W#XYEWW^^E"IINN5)E.C(+((8		ws|4
 
E399??	+ D
 	
 LL''.EMM% EL    i  jo  ip  p~  @  ~A  B s   2AF" "	G+F<<Gc                 <   t        | t        t        f      rjt        |       rDt        | d   t        t        f      r+| D cg c]  }|D cg c]  }t	        ||       c} c}}S | D cg c]  }t	        ||       c}S t	        | |      S c c}w c c}}w c c}w )a  Loads images, handling different levels of nesting.

    Args:
      images: A single image, a list of images, or a list of lists of images to load.
      timeout: Timeout for loading images.

    Returns:
      A single image, a list of images, a list of lists of images.
    r   r   )r4   rZ   re   r   r   )rM   r   image_grouprI   s       r(   load_imagesr     s     &4-(v;:fQi$?eklVa[QEZw7QllDJK5Jug6KK&'22	 RlKs    	B	BB*BB
do_rescalerescale_factordo_normalize
image_mean	image_stddo_padsize_divisibilitydo_center_crop	crop_size	do_resizesizeresamplePILImageResamplinginterpolationr   c                     | r|t        d      |r|t        d      |r||t        d      |r|t        d      ||t        d      |	r|
||t        d      yyy)a  
    Checks validity of typically used arguments in an `ImageProcessor` `preprocess` method.
    Raises `ValueError` if arguments incompatibility is caught.
    Many incompatibilities are model-specific. `do_pad` sometimes needs `size_divisor`,
    sometimes `size_divisibility`, and sometimes `size`. New models and processors added should follow
    existing arguments when possible.

    Nz=`rescale_factor` must be specified if `do_rescale` is `True`.zzDepending on the model, `size_divisibility`, `size_divisor`, `pad_size` or `size` must be specified if `do_pad` is `True`.zP`image_mean` and `image_std` must both be specified if `do_normalize` is `True`.z<`crop_size` must be specified if `do_center_crop` is `True`.zbOnly one of `interpolation` and `resample` should be specified, depending on image processor type.zO`size` and `resample/interpolation` must be specified if `do_resize` is `True`.)rF   )r   r   r   r   r   r   r   r   r   r   r   r   r   s                r(   validate_preprocess_argumentsr     s    . n,XYY#+ I
 	
 +y/@kll)+WXX X%9p
 	
 $*0DHajkk Ib0Dyr'   c                       e Zd ZdZd ZddZd Zdej                  de	e
ef   dej                  fd	Zdd
Zd ZddZddZd Zd ZddZy)ImageFeatureExtractionMixinzD
    Mixin that contain utilities for preparing image features.
    c                     t        |t        j                  j                  t        j                  f      s$t        |      st        dt        |       d      y y )Nz	Got type zS which is not supported, only `PIL.Image.Image`, `np.array` and `torch.Tensor` are.)r4   r5   r6   r[   r\   r   rF   rG   selfrI   s     r(   _ensure_format_supportedz4ImageFeatureExtractionMixin._ensure_format_supportedB  sQ    %#))//2::!>?X]H^DK= )& &  I_?r'   Nc                    | j                  |       t        |      r|j                         }t        |t        j
                        r|'t        |j                  d   t        j                        }|j                  dk(  r$|j                  d   dv r|j                  ddd      }|r|dz  }|j                  t        j                        }t        j                  j                  |      S |S )a"  
        Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
        needed.

        Args:
            image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
                The image to convert to the PIL Image format.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
                default to `True` if the image type is a floating type, `False` otherwise.
        r   r   r   r	   r      )r   r   r>   r4   r[   r\   flatfloatingrt   r   	transposeastyperm   r5   r6   	fromarray)r   rI   rescales      r(   to_pil_imagez(ImageFeatureExtractionMixin.to_pil_imageI  s     	%%e,5!KKMEeRZZ($UZZ]BKK@zzQ5;;q>V#;1a0LL*E99&&u--r'   c                     | j                  |       t        |t        j                  j                        s|S |j	                  d      S )z
        Converts `PIL.Image.Image` to RGB format.

        Args:
            image (`PIL.Image.Image`):
                The image to convert.
        r   )r   r4   r5   r6   r   r   s     r(   convert_rgbz'ImageFeatureExtractionMixin.convert_rgbg  s8     	%%e,%1L}}U##r'   rI   scalerj   c                 .    | j                  |       ||z  S )z7
        Rescale a numpy image by scale amount
        )r   )r   rI   r  s      r(   r   z#ImageFeatureExtractionMixin.rescaleu  s     	%%e,u}r'   c                    | j                  |       t        |t        j                  j                        rt	        j
                  |      }t        |      r|j                         }|'t        |j                  d   t        j                        n|}|r/| j                  |j                  t        j                        d      }|r"|j                  dk(  r|j                  ddd      }|S )a  
        Converts `image` to a numpy array. Optionally rescales it and puts the channel dimension as the first
        dimension.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to convert to a NumPy array.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will
                default to `True` if the image is a PIL Image or an array/tensor of integers, `False` otherwise.
            channel_first (`bool`, *optional*, defaults to `True`):
                Whether or not to permute the dimensions of the image to put the channel dimension first.
        r   p?r   r   r	   )r   r4   r5   r6   r[   r   r   r>   r   integerr   r   float32rt   r   )r   rI   r   channel_firsts       r(   r   z*ImageFeatureExtractionMixin.to_numpy_array|  s     	%%e,eSYY__-HHUOE5!KKME;B?*UZZ]BJJ7PWLLbjj!99EEUZZ1_OOAq!,Er'   c                     | j                  |       t        |t        j                  j                        r|S t	        |      r|j                  d      }|S t        j                  |d      }|S )z
        Expands 2-dimensional `image` to 3 dimensions.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to expand.
        r   rW   )r   r4   r5   r6   r   	unsqueezer[   expand_dimsr   s     r(   r  z'ImageFeatureExtractionMixin.expand_dims  s_     	%%e, eSYY__-L5!OOA&E  NN5q1Er'   c                    | j                  |       t        |t        j                  j                        r| j	                  |d      }nw|rut        |t
        j                        r0| j                  |j                  t
        j                        d      }n+t        |      r | j                  |j                         d      }t        |t
        j                        rt        |t
        j                        s.t        j                  |      j                  |j                        }t        |t
        j                        st        j                  |      j                  |j                        }nt        |      rddl}t        ||j                        s?t        |t
        j                        r |j                   |      }n |j"                  |      }t        ||j                        s?t        |t
        j                        r |j                   |      }n |j"                  |      }|j$                  dk(  r)|j&                  d   dv r||ddddf   z
  |ddddf   z  S ||z
  |z  S )a  
        Normalizes `image` with `mean` and `std`. Note that this will trigger a conversion of `image` to a NumPy array
        if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to normalize.
            mean (`list[float]` or `np.ndarray` or `torch.Tensor`):
                The mean (per channel) to use for normalization.
            std (`list[float]` or `np.ndarray` or `torch.Tensor`):
                The standard deviation (per channel) to use for normalization.
            rescale (`bool`, *optional*, defaults to `False`):
                Whether or not to rescale the image to be between 0 and 1. If a PIL image is provided, scaling will
                happen automatically.
        T)r   r  r   Nr   r   )r   r4   r5   r6   r   r[   r\   r   r   r  r   floatr   rl   r=   r^   
from_numpytensorrt   r   )r   rI   meanstdr   r=   s         r(   	normalizez%ImageFeatureExtractionMixin.normalize  s     	%%e,eSYY__-''t'<E %,U\\"**%=yI 'U[[]I>eRZZ(dBJJ/xx~,,U[[9c2::.hhsm**5;;7U#dELL1dBJJ/+5++D1D'5<<-Dc5<<0c2::.*%**3/C&%,,s+C::?u{{1~7DD$//3q$}3EEEDLC''r'   c                    ||nt         j                  }| j                  |       t        |t        j
                  j
                        s| j                  |      }t        |t              rt        |      }t        |t              st        |      dk(  r|rt        |t              r||fn	|d   |d   f}n|j                  \  }}||k  r||fn||f\  }}	t        |t              r|n|d   }
||
k(  r|S |
t        |
|	z  |z        }}|.||
k  rt        d| d|       ||kD  rt        ||z  |z        |}}||k  r||fn||f}|j                  ||      S )a  
        Resizes `image`. Enforces conversion of input to PIL.Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to resize.
            size (`int` or `tuple[int, int]`):
                The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be
                matched to this.

                If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
                `size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to
                this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
            resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                The filter to user for resampling.
            default_to_square (`bool`, *optional*, defaults to `True`):
                How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a
                square (`size`,`size`). If set to `False`, will replicate
                [`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
                with support for resizing only the smallest edge and providing an optional `max_size`.
            max_size (`int`, *optional*, defaults to `None`):
                The maximum allowed for the longer edge of the resized image: if the longer edge of the image is
                greater than `max_size` after being resized according to `size`, then the image is resized again so
                that the longer edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller
                edge may be shorter than `size`. Only used if `default_to_square` is `False`.

        Returns:
            image: A resized `PIL.Image.Image`.
        r	   r   zmax_size = zN must be strictly greater than the requested size for the smaller edge size = )r   )r   BILINEARr   r4   r5   r6   r   rZ   re   r   r   r   rF   resize)r   rI   r   r   default_to_squaremax_sizer   r   shortlongrequested_new_short	new_shortnew_longs                r(   r  z"ImageFeatureExtractionMixin.resize  sy   <  (389K9T9T%%e,%1%%e,EdD!;DdC CIN '1$'<d|47DQRGBT %

v16&ufovuot.8s.Cda#// L&93?RUY?Y\a?a;b8	'#66()( 4@@DvG   (*.1(Y2F2Q.RT\8	05	8,hPYEZ||D8|44r'   c                    | j                  |       t        |t              s||f}t        |      st        |t        j
                        rP|j                  dk(  r| j                  |      }|j                  d   dv r|j                  dd n|j                  dd }n|j                  d   |j                  d   f}|d   |d   z
  dz  }||d   z   }|d   |d   z
  dz  }||d   z   }t        |t        j                  j                        r|j                  ||||f      S |j                  d   dv }|sKt        |t        j
                        r|j                  ddd      }t        |      r|j                  ddd      }|dk\  r!||d   k  r|dk\  r||d   k  r|d||||f   S |j                  dd t        |d   |d         t        |d   |d         fz   }	t        |t        j
                        rt	        j                   ||	      }
nt        |      r|j#                  |	      }
|	d   |d   z
  dz  }||d   z   }|	d	   |d   z
  dz  }||d   z   }|
d||||f<   ||z  }||z  }||z  }||z  }|
dt        d|      t%        |
j                  d   |      t        d|      t%        |
j                  d	   |      f   }
|
S )
a  
        Crops `image` to the given size using a center crop. Note that if the image is too small to be cropped to the
        size given, it will be padded (so the returned result has the size asked).

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape (n_channels, height, width) or (height, width, n_channels)):
                The image to resize.
            size (`int` or `tuple[int, int]`):
                The size to which crop the image.

        Returns:
            new_image: A center cropped `PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape: (n_channels,
            height, width).
        r   r   r   r	   N.r   )r   r   )r   r4   re   r   r[   r\   rt   r  r   r   r5   r6   cropr   permutero   
zeros_like	new_zerosrn   )r   rI   r   image_shapetopbottomleftrightr	  	new_shape	new_imagetop_pad
bottom_padleft_pad	right_pads                  r(   center_cropz'ImageFeatureExtractionMixin.center_crop'  s    	%%e,$&$<D 5!Zrzz%BzzQ((/-2[[^v-E%++ab/5;;WYXY?K ::a=%**Q-8K1~Q'A-tAwAa(Q.tAw eSYY__-::tS%899 A&0 %,1a0u%aA. !8+a.0TQY5KXYNCZc&j$u*455 KK$DG[^(Dc$q'S^_`SaFb'cc	eRZZ(e9=IU#	2IR=;q>1a7{1~-
bMKN2q8{1~-	AF	#wz)8I+==>w'Qs9??2#6??QPST]TcTcdfTginPoAoo
	 r'   c                     | j                  |       t        |t        j                  j                        r| j	                  |      }|dddddddf   S )a  
        Flips the channel order of `image` from RGB to BGR, or vice versa. Note that this will trigger a conversion of
        `image` to a NumPy array if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image whose color channels to flip. If `np.ndarray` or `torch.Tensor`, the channel dimension should
                be first.
        Nr   )r   r4   r5   r6   r   r   s     r(   flip_channel_orderz.ImageFeatureExtractionMixin.flip_channel_orderr  sI     	%%e,eSYY__-''.ETrT1aZ  r'   c                     ||nt         j                  j                  }| j                  |       t	        |t         j                  j                        s| j                  |      }|j                  ||||||      S )a  
        Returns a rotated copy of `image`. This method returns a copy of `image`, rotated the given number of degrees
        counter clockwise around its centre.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to rotate. If `np.ndarray` or `torch.Tensor`, will be converted to `PIL.Image.Image` before
                rotating.

        Returns:
            image: A rotated `PIL.Image.Image`.
        )r   expandcenter	translate	fillcolor)r5   r6   NEARESTr   r4   r   rotate)r   rI   angler   r2  r3  r4  r5  s           r(   r7  z"ImageFeatureExtractionMixin.rotate  sn      (389J9J%%e,%1%%e,E||HVFicl  
 	
r'   r3   )NT)F)NTN)Nr   NNN)r!   r"   r#   __doc__r   r   r  r[   r\   r   r  r   r   r   r  r  r  r.  r0  r7  r&   r'   r(   r   r   =  sj    <$RZZ eSj0A bjj @(2(hA5FIV!"
r'   r   annotation_formatsupported_annotation_formatsc                     | |vrt        dt         d|       | t        j                  u rt	        |      st        d      | t        j
                  u rt        |      st        d      y y )NzUnsupported annotation format: z must be one of zInvalid COCO detection annotations. Annotations must a dict (single image) or list of dicts (batch of images) with the following keys: `image_id` and `annotations`, with the latter being a list of annotations in the COCO format.zInvalid COCO panoptic annotations. Annotations must a dict (single image) or list of dicts (batch of images) with the following keys: `image_id`, `file_name` and `segments_info`, with the latter being a list of annotations in the COCO format.)rF   formatr*   r-   r   r.   r   )r:  r;  r   s      r(   validate_annotationsr>    s    
  <<:6(BRSoRpqrr,;;;/<B  ,:::.{;M  < ;r'   valid_processor_keyscaptured_kwargsc                     t        |      j                  t        |             }|r+dj                  |      }t        j	                  d| d       y y )Nz, zUnused or unrecognized kwargs: rs   )set
differencejoinr   r   )r?  r@  unused_keysunused_key_strs       r(   validate_kwargsrG    sJ    o&11#6J2KLK;/88HJK r'   T)frozenc                       e Zd ZU dZdZee   ed<   dZee   ed<   dZ	ee   ed<   dZ
ee   ed<   dZee   ed<   dZee   ed<   d	 Zy)
SizeDictz>
    Hashable dictionary to store image size information.
    Nr   r   longest_edgeshortest_edger   r   c                 P    t        | |      rt        | |      S t        d| d      )NzKey z not found in SizeDict.)hasattrgetattrKeyError)r   keys     r(   __getitem__zSizeDict.__getitem__  s.    44%%cU"9:;;r'   )r!   r"   r#   r9  r   r   r   __annotations__r   rK  rL  r   r   rR  r&   r'   r(   rJ  rJ    sb     !FHSM E8C="&L(3-&#'M8C=' $J$#Ix}#<r'   rJ  )r   r3   )NNNNNNNNNNNNN)dr   r   collections.abcr   dataclassesr   ior   typingr   r   r>   r[   r   	packagingr   utilsr
   r   r   r   r   r   r   r   r   r   r   r   utils.constantsr   r   r   r   r   r   	PIL.Imager5   PIL.ImageOpsparse__version__base_versionr6   
Resamplingr   torchvision.transformsr   r6  NEAREST_EXACTBOXr  HAMMINGBICUBICLANCZOSpil_torch_interpolation_mappingr=   
get_loggerr!   r   r\   rZ   
ImageInputr   r*   r0   r   r   r   AnnotationTyper9   r;   rJ   rL   rU   rc   rf   ri   boolrp   ru   r   r   r   re   r   r   r   r   r   r   r   r   r  r   r   r   r   r>  rG  rJ  r&   r'   r(   <module>rl     st    	 $ !  "        w}}]W]]3??3@@A]W]]SZE[[ YY11 YY!< &&*, ):(G(G"**""$5$9$9''):)C)C&&(9(A(A&&(9(A(A&&(9(A(A	+
' +-'  
		H	% rzz>48I3JDQSQ[Q[L\^bcq^rr

| 
$| $
9\ 9
 c5c4:!5667F ?wED E,	52:: 5$ 5$ $D<L $R #L$z"J./#L#L #LP $v$z"J./$v$v $vN2::  NR$A::$A%-eCsCx4H.I%J$A$AP TXF::F*259I39N3O*PFF0D"** D3C DuUXZ]U] D0!c3h!! ! 38_	!>4U4;=O8O3P UY $sE$+<N7N2O TX  O(4U4QV;EW@W;X2Y O^b ON$sE$PU+DV?V:W1X N]a N)eC!223 )huo )Yj )Z TX3$s$5563AI%3
d#45tDAR<S7TTU3, "&&*#'6:59!'+%)*. $%)/337,l,lUO,l 4.,l ud5k123	,l
 eT%[012,l TN,l  },l TN,l S#X',l ~,l 4S>
",l +,,l /0,l`\
 \
~
'"'(8#(="> d 
	2L$s) Ld3i L $< < <r'   