from __future__ import annotations

import copy
import pathlib
import re
from io import StringIO
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Literal,
    Optional,
    TypedDict,
    Union,
    cast,
)

import requests
from langchain_core._api import beta
from langchain_core.documents import BaseDocumentTransformer, Document

from langchain_text_splitters.character import RecursiveCharacterTextSplitter

if TYPE_CHECKING:
    from collections.abc import Iterable, Sequence

    from bs4.element import PageElement


class ElementType(TypedDict):
    """Element type as typed dict."""

    url: str
    xpath: str
    content: str
    metadata: dict[str, str]


class HTMLHeaderTextSplitter:
    """Split HTML content into structured Documents based on specified headers.

    Splits HTML content by detecting specified header tags (e.g., <h1>, <h2>) and
    creating hierarchical Document objects that reflect the semantic structure
    of the original content. For each identified section, the splitter associates
    the extracted text with metadata corresponding to the encountered headers.

    If no specified headers are found, the entire content is returned as a single
    Document. This allows for flexible handling of HTML input, ensuring that
    information is organized according to its semantic headers.

    The splitter provides the option to return each HTML element as a separate
    Document or aggregate them into semantically meaningful chunks. It also
    gracefully handles multiple levels of nested headers, creating a rich,
    hierarchical representation of the content.

    Example:

        .. code-block:: python

            from langchain_text_splitters.html_header_text_splitter import (
                HTMLHeaderTextSplitter,
            )

            # Define headers for splitting on h1 and h2 tags.
            headers_to_split_on = [("h1", "Main Topic"), ("h2", "Sub Topic")]

            splitter = HTMLHeaderTextSplitter(
                headers_to_split_on=headers_to_split_on,
                return_each_element=False
            )

            html_content = \"\"\"
            <html>
              <body>
                <h1>Introduction</h1>
                <p>Welcome to the introduction section.</p>
                <h2>Background</h2>
                <p>Some background details here.</p>
                <h1>Conclusion</h1>
                <p>Final thoughts.</p>
              </body>
            </html>
            \"\"\"

            documents = splitter.split_text(html_content)

            # 'documents' now contains Document objects reflecting the hierarchy:
            # - Document with metadata={"Main Topic": "Introduction"} and
            #   content="Introduction"
            # - Document with metadata={"Main Topic": "Introduction"} and
            #   content="Welcome to the introduction section."
            # - Document with metadata={"Main Topic": "Introduction",
            #   "Sub Topic": "Background"} and content="Background"
            # - Document with metadata={"Main Topic": "Introduction",
            #   "Sub Topic": "Background"} and content="Some background details here."
            # - Document with metadata={"Main Topic": "Conclusion"} and
            #   content="Conclusion"
            # - Document with metadata={"Main Topic": "Conclusion"} and
            #   content="Final thoughts."

    """

    def __init__(
        self,
        headers_to_split_on: list[tuple[str, str]],
        return_each_element: bool = False,  # noqa: FBT001,FBT002
    ) -> None:
        """Initialize with headers to split on.

        Args:
            headers_to_split_on: A list of (header_tag,
                header_name) pairs representing the headers that define splitting
                boundaries. For example, [("h1", "Header 1"), ("h2", "Header 2")]
                will split content by <h1> and <h2> tags, assigning their textual
                content to the Document metadata.
            return_each_element: If True, every HTML element encountered
                (including headers, paragraphs, etc.) is returned as a separate
                Document. If False, content under the same header hierarchy is
                aggregated into fewer Documents.
        """
        # Sort headers by their numeric level so that h1 < h2 < h3...
        self.headers_to_split_on = sorted(
            headers_to_split_on, key=lambda x: int(x[0][1:])
        )
        self.header_mapping = dict(self.headers_to_split_on)
        self.header_tags = [tag for tag, _ in self.headers_to_split_on]
        self.return_each_element = return_each_element

    def split_text(self, text: str) -> list[Document]:
        """Split the given text into a list of Document objects.

        Args:
            text: The HTML text to split.

        Returns:
            A list of split Document objects. Each Document contains
            `page_content` holding the extracted text and `metadata` that maps
            the header hierarchy to their corresponding titles.
        """
        return self.split_text_from_file(StringIO(text))

    def split_text_from_url(
        self, url: str, timeout: int = 10, **kwargs: Any
    ) -> list[Document]:
        """Fetch text content from a URL and split it into documents.

        Args:
            url: The URL to fetch content from.
            timeout: Timeout for the request. Defaults to 10.
            **kwargs: Additional keyword arguments for the request.

        Returns:
            A list of split Document objects. Each Document contains
            `page_content` holding the extracted text and `metadata` that maps
            the header hierarchy to their corresponding titles.

        Raises:
            requests.RequestException: If the HTTP request fails.
        """
        kwargs.setdefault("timeout", timeout)
        response = requests.get(
            url,
            timeout=kwargs.get("timeout", timeout),
            **{k: v for k, v in kwargs.items() if k != "timeout"},
        )
        response.raise_for_status()
        return self.split_text(response.text)

    def split_text_from_file(self, file: Any) -> list[Document]:
        """Split HTML content from a file into a list of Document objects.

        Args:
            file: A file path or a file-like object containing HTML content.

        Returns:
            A list of split Document objects. Each Document contains
            `page_content` holding the extracted text and `metadata` that maps
            the header hierarchy to their corresponding titles.
        """
        if isinstance(file, str):
            with open(file, encoding="utf-8") as f:
                html_content = f.read()
        else:
            html_content = file.read()
        return list(self._generate_documents(html_content))

    def _generate_documents(self, html_content: str) -> Any:
        """Private method that performs a DFS traversal over the DOM and yields.

        Document objects on-the-fly. This approach maintains the same splitting
        logic (headers vs. non-headers, chunking, etc.) while walking the DOM
        explicitly in code.

        Args:
            html_content: The raw HTML content.

        Yields:
            Document objects as they are created.
        """
        try:
            from bs4 import BeautifulSoup
        except ImportError as e:
            msg = (
                "Unable to import BeautifulSoup. Please install via `pip install bs4`."
            )
            raise ImportError(msg) from e

        soup = BeautifulSoup(html_content, "html.parser")
        body = soup.body if soup.body else soup

        # Dictionary of active headers:
        #   key = user-defined header name (e.g. "Header 1")
        #   value = (header_text, level, dom_depth)
        active_headers: dict[str, tuple[str, int, int]] = {}
        current_chunk: list[str] = []

        def finalize_chunk() -> Optional[Document]:
            """Finalize the accumulated chunk into a single Document."""
            if not current_chunk:
                return None

            final_text = "  \n".join(line for line in current_chunk if line.strip())
            current_chunk.clear()
            if not final_text.strip():
                return None

            final_meta = {k: v[0] for k, v in active_headers.items()}
            return Document(page_content=final_text, metadata=final_meta)

        # We'll use a stack for DFS traversal
        stack = [body]
        while stack:
            node = stack.pop()
            children = list(node.children)
            from bs4.element import Tag

            stack.extend(
                child for child in reversed(children) if isinstance(child, Tag)
            )

            tag = getattr(node, "name", None)
            if not tag:
                continue

            text_elements = [
                str(child).strip()
                for child in node.find_all(string=True, recursive=False)
            ]
            node_text = " ".join(elem for elem in text_elements if elem)
            if not node_text:
                continue

            dom_depth = len(list(node.parents))

            # If this node is one of our headers
            if tag in self.header_tags:
                # If we're aggregating, finalize whatever chunk we had
                if not self.return_each_element:
                    doc = finalize_chunk()
                    if doc:
                        yield doc

                # Determine numeric level (h1->1, h2->2, etc.)
                try:
                    level = int(tag[1:])
                except ValueError:
                    level = 9999

                # Remove any active headers that are at or deeper than this new level
                headers_to_remove = [
                    k for k, (_, lvl, d) in active_headers.items() if lvl >= level
                ]
                for key in headers_to_remove:
                    del active_headers[key]

                # Add/Update the active header
                header_name = self.header_mapping[tag]
                active_headers[header_name] = (node_text, level, dom_depth)

                # Always yield a Document for the header
                header_meta = {k: v[0] for k, v in active_headers.items()}
                yield Document(page_content=node_text, metadata=header_meta)

            else:
                headers_out_of_scope = [
                    k for k, (_, _, d) in active_headers.items() if dom_depth < d
                ]
                for key in headers_out_of_scope:
                    del active_headers[key]

                if self.return_each_element:
                    # Yield each element's text as its own Document
                    meta = {k: v[0] for k, v in active_headers.items()}
                    yield Document(page_content=node_text, metadata=meta)
                else:
                    # Accumulate text in our chunk
                    current_chunk.append(node_text)

        # If we're aggregating and have leftover chunk, yield it
        if not self.return_each_element:
            doc = finalize_chunk()
            if doc:
                yield doc


class HTMLSectionSplitter:
    """Splitting HTML files based on specified tag and font sizes.

    Requires lxml package.
    """

    def __init__(
        self,
        headers_to_split_on: list[tuple[str, str]],
        **kwargs: Any,
    ) -> None:
        """Create a new HTMLSectionSplitter.

        Args:
            headers_to_split_on: list of tuples of headers we want to track mapped to
                (arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4,
                h5, h6 e.g. [("h1", "Header 1"), ("h2", "Header 2"].
            **kwargs (Any): Additional optional arguments for customizations.

        """
        self.headers_to_split_on = dict(headers_to_split_on)
        self.xslt_path = (
            pathlib.Path(__file__).parent / "xsl/converting_to_header.xslt"
        ).absolute()
        self.kwargs = kwargs

    def split_documents(self, documents: Iterable[Document]) -> list[Document]:
        """Split documents."""
        texts, metadatas = [], []
        for doc in documents:
            texts.append(doc.page_content)
            metadatas.append(doc.metadata)
        results = self.create_documents(texts, metadatas=metadatas)

        text_splitter = RecursiveCharacterTextSplitter(**self.kwargs)

        return text_splitter.split_documents(results)

    def split_text(self, text: str) -> list[Document]:
        """Split HTML text string.

        Args:
            text: HTML text
        """
        return self.split_text_from_file(StringIO(text))

    def create_documents(
        self, texts: list[str], metadatas: Optional[list[dict[Any, Any]]] = None
    ) -> list[Document]:
        """Create documents from a list of texts."""
        _metadatas = metadatas or [{}] * len(texts)
        documents = []
        for i, text in enumerate(texts):
            for chunk in self.split_text(text):
                metadata = copy.deepcopy(_metadatas[i])

                for key in chunk.metadata:
                    if chunk.metadata[key] == "#TITLE#":
                        chunk.metadata[key] = metadata["Title"]
                metadata = {**metadata, **chunk.metadata}
                new_doc = Document(page_content=chunk.page_content, metadata=metadata)
                documents.append(new_doc)
        return documents

    def split_html_by_headers(self, html_doc: str) -> list[dict[str, Optional[str]]]:
        """Split an HTML document into sections based on specified header tags.

        This method uses BeautifulSoup to parse the HTML content and divides it into
        sections based on headers defined in `headers_to_split_on`. Each section
        contains the header text, content under the header, and the tag name.

        Args:
            html_doc (str): The HTML document to be split into sections.

        Returns:
            List[Dict[str, Optional[str]]]: A list of dictionaries representing
            sections.
            Each dictionary contains:

            * 'header': The header text or a default title for the first section.
            * 'content': The content under the header.
            * 'tag_name': The name of the header tag (e.g., "h1", "h2").
        """
        try:
            from bs4 import BeautifulSoup
        except ImportError as e:
            msg = "Unable to import BeautifulSoup/PageElement, \
                    please install with `pip install \
                    bs4`."
            raise ImportError(msg) from e

        soup = BeautifulSoup(html_doc, "html.parser")
        headers = list(self.headers_to_split_on.keys())
        sections: list[dict[str, str | None]] = []

        headers = soup.find_all(["body", *headers])  # type: ignore[assignment]

        for i, header in enumerate(headers):
            header_element = cast("PageElement", header)
            if i == 0:
                current_header = "#TITLE#"
                current_header_tag = "h1"
                section_content: list[str] = []
            else:
                current_header = header_element.text.strip()
                current_header_tag = header_element.name  # type: ignore[attr-defined]
                section_content = []
            for element in header_element.next_elements:
                if i + 1 < len(headers) and element == headers[i + 1]:  # type: ignore[comparison-overlap]
                    break
                if isinstance(element, str):
                    section_content.append(element)
            content = " ".join(section_content).strip()

            if content != "":
                sections.append(
                    {
                        "header": current_header,
                        "content": content,
                        "tag_name": current_header_tag,
                    }
                )

        return sections

    def convert_possible_tags_to_header(self, html_content: str) -> str:
        """Convert specific HTML tags to headers using an XSLT transformation.

        This method uses an XSLT file to transform the HTML content, converting
        certain tags into headers for easier parsing. If no XSLT path is provided,
        the HTML content is returned unchanged.

        Args:
            html_content (str): The HTML content to be transformed.

        Returns:
            str: The transformed HTML content as a string.
        """
        try:
            from lxml import etree
        except ImportError as e:
            msg = "Unable to import lxml, please install with `pip install lxml`."
            raise ImportError(msg) from e
        # use lxml library to parse html document and return xml ElementTree
        # Create secure parsers to prevent XXE attacks
        html_parser = etree.HTMLParser(no_network=True)
        xslt_parser = etree.XMLParser(
            resolve_entities=False, no_network=True, load_dtd=False
        )

        # Apply XSLT access control to prevent file/network access
        # DENY_ALL is a predefined access control that blocks all file/network access
        # Type ignore needed due to incomplete lxml type stubs
        ac = etree.XSLTAccessControl.DENY_ALL  # type: ignore[attr-defined]

        tree = etree.parse(StringIO(html_content), html_parser)
        xslt_tree = etree.parse(self.xslt_path, xslt_parser)
        transform = etree.XSLT(xslt_tree, access_control=ac)
        result = transform(tree)
        return str(result)

    def split_text_from_file(self, file: Any) -> list[Document]:
        """Split HTML content from a file into a list of Document objects.

        Args:
            file: A file path or a file-like object containing HTML content.

        Returns:
            A list of split Document objects.
        """
        file_content = file.getvalue()
        file_content = self.convert_possible_tags_to_header(file_content)
        sections = self.split_html_by_headers(file_content)

        return [
            Document(
                cast("str", section["content"]),
                metadata={
                    self.headers_to_split_on[str(section["tag_name"])]: section[
                        "header"
                    ]
                },
            )
            for section in sections
        ]


@beta()
class HTMLSemanticPreservingSplitter(BaseDocumentTransformer):
    """Split HTML content preserving semantic structure.

    Splits HTML content by headers into generalized chunks, preserving semantic
    structure. If chunks exceed the maximum chunk size, it uses
    RecursiveCharacterTextSplitter for further splitting.

    The splitter preserves full HTML elements (e.g., <table>, <ul>) and converts
    links to Markdown-like links. It can also preserve images, videos, and audio
    elements by converting them into Markdown format. Note that some chunks may
    exceed the maximum size to maintain semantic integrity.

    .. versionadded: 0.3.5

    Example:
        .. code-block:: python

            from langchain_text_splitters.html import HTMLSemanticPreservingSplitter

            def custom_iframe_extractor(iframe_tag):
                ```
                Custom handler function to extract the 'src' attribute from an <iframe> tag.
                Converts the iframe to a Markdown-like link: [iframe:<src>](src).

                Args:
                    iframe_tag (bs4.element.Tag): The <iframe> tag to be processed.

                Returns:
                    str: A formatted string representing the iframe in Markdown-like format.
                ```
                iframe_src = iframe_tag.get('src', '')
                return f"[iframe:{iframe_src}]({iframe_src})"

            text_splitter = HTMLSemanticPreservingSplitter(
                headers_to_split_on=[("h1", "Header 1"), ("h2", "Header 2")],
                max_chunk_size=500,
                preserve_links=True,
                preserve_images=True,
                custom_handlers={"iframe": custom_iframe_extractor}
            )

    """  # noqa: E501, D214

    def __init__(
        self,
        headers_to_split_on: list[tuple[str, str]],
        *,
        max_chunk_size: int = 1000,
        chunk_overlap: int = 0,
        separators: Optional[list[str]] = None,
        elements_to_preserve: Optional[list[str]] = None,
        preserve_links: bool = False,
        preserve_images: bool = False,
        preserve_videos: bool = False,
        preserve_audio: bool = False,
        custom_handlers: Optional[dict[str, Callable[[Any], str]]] = None,
        stopword_removal: bool = False,
        stopword_lang: str = "english",
        normalize_text: bool = False,
        external_metadata: Optional[dict[str, str]] = None,
        allowlist_tags: Optional[list[str]] = None,
        denylist_tags: Optional[list[str]] = None,
        preserve_parent_metadata: bool = False,
        keep_separator: Union[bool, Literal["start", "end"]] = True,
    ) -> None:
        """Initialize splitter.

        Args:
            headers_to_split_on: HTML headers (e.g., "h1", "h2")
                that define content sections.
            max_chunk_size: Maximum size for each chunk, with allowance for
                exceeding this limit to preserve semantics.
            chunk_overlap: Number of characters to overlap between chunks to ensure
                contextual continuity.
            separators: Delimiters used by RecursiveCharacterTextSplitter for
                further splitting.
            elements_to_preserve: HTML tags (e.g., <table>, <ul>) to remain
                intact during splitting.
            preserve_links: Converts <a> tags to Markdown links ([text](url)).
            preserve_images: Converts <img> tags to Markdown images (![alt](src)).
            preserve_videos: Converts <video> tags to Markdown
                video links (![video](src)).
            preserve_audio: Converts <audio> tags to Markdown
                audio links (![audio](src)).
            custom_handlers: Optional custom handlers for
                specific HTML tags, allowing tailored extraction or processing.
            stopword_removal: Optionally remove stopwords from the text.
            stopword_lang: The language of stopwords to remove.
            normalize_text: Optionally normalize text
                (e.g., lowercasing, removing punctuation).
            external_metadata: Additional metadata to attach to
                the Document objects.
            allowlist_tags: Only these tags will be retained in
                the HTML.
            denylist_tags: These tags will be removed from the HTML.
            preserve_parent_metadata: Whether to pass through parent document
                metadata to split documents when calling
                ``transform_documents/atransform_documents()``.
            keep_separator: Whether separators
                should be at the beginning of a chunk, at the end, or not at all.
        """
        try:
            from bs4 import BeautifulSoup, Tag

            self._BeautifulSoup = BeautifulSoup
            self._Tag = Tag
        except ImportError as err:
            msg = (
                "Could not import BeautifulSoup. "
                "Please install it with 'pip install bs4'."
            )
            raise ImportError(msg) from err

        self._headers_to_split_on = sorted(headers_to_split_on)
        self._max_chunk_size = max_chunk_size
        self._elements_to_preserve = elements_to_preserve or []
        self._preserve_links = preserve_links
        self._preserve_images = preserve_images
        self._preserve_videos = preserve_videos
        self._preserve_audio = preserve_audio
        self._custom_handlers = custom_handlers or {}
        self._stopword_removal = stopword_removal
        self._stopword_lang = stopword_lang
        self._normalize_text = normalize_text
        self._external_metadata = external_metadata or {}
        self._allowlist_tags = allowlist_tags
        self._preserve_parent_metadata = preserve_parent_metadata
        self._keep_separator = keep_separator
        if allowlist_tags:
            self._allowlist_tags = list(
                set(allowlist_tags + [header[0] for header in headers_to_split_on])
            )
        self._denylist_tags = denylist_tags
        if denylist_tags:
            self._denylist_tags = [
                tag
                for tag in denylist_tags
                if tag not in [header[0] for header in headers_to_split_on]
            ]
        if separators:
            self._recursive_splitter = RecursiveCharacterTextSplitter(
                separators=separators,
                keep_separator=keep_separator,
                chunk_size=max_chunk_size,
                chunk_overlap=chunk_overlap,
            )
        else:
            self._recursive_splitter = RecursiveCharacterTextSplitter(
                keep_separator=keep_separator,
                chunk_size=max_chunk_size,
                chunk_overlap=chunk_overlap,
            )

        if self._stopword_removal:
            try:
                import nltk

                nltk.download("stopwords")
                self._stopwords = set(nltk.corpus.stopwords.words(self._stopword_lang))
            except ImportError as err:
                msg = (
                    "Could not import nltk. Please install it with 'pip install nltk'."
                )
                raise ImportError(msg) from err

    def split_text(self, text: str) -> list[Document]:
        """Splits the provided HTML text into smaller chunks based on the configuration.

        Args:
            text (str): The HTML content to be split.

        Returns:
            List[Document]: A list of Document objects containing the split content.
        """
        soup = self._BeautifulSoup(text, "html.parser")

        self._process_media(soup)

        if self._preserve_links:
            self._process_links(soup)

        if self._allowlist_tags or self._denylist_tags:
            self._filter_tags(soup)

        return self._process_html(soup)

    def transform_documents(
        self, documents: Sequence[Document], **kwargs: Any
    ) -> list[Document]:
        """Transform sequence of documents by splitting them."""
        transformed = []
        for doc in documents:
            splits = self.split_text(doc.page_content)
            if self._preserve_parent_metadata:
                splits = [
                    Document(
                        page_content=split_doc.page_content,
                        metadata={**doc.metadata, **split_doc.metadata},
                    )
                    for split_doc in splits
                ]
            transformed.extend(splits)
        return transformed

    def _process_media(self, soup: Any) -> None:
        """Processes the media elements.

        Process elements in the HTML content by wrapping them in a <media-wrapper> tag
        and converting them to Markdown format.

        Args:
            soup (Any): Parsed HTML content using BeautifulSoup.
        """
        if self._preserve_images:
            for img_tag in soup.find_all("img"):
                img_src = img_tag.get("src", "")
                markdown_img = f"![image:{img_src}]({img_src})"
                wrapper = soup.new_tag("media-wrapper")
                wrapper.string = markdown_img
                img_tag.replace_with(wrapper)

        if self._preserve_videos:
            for video_tag in soup.find_all("video"):
                video_src = video_tag.get("src", "")
                markdown_video = f"![video:{video_src}]({video_src})"
                wrapper = soup.new_tag("media-wrapper")
                wrapper.string = markdown_video
                video_tag.replace_with(wrapper)

        if self._preserve_audio:
            for audio_tag in soup.find_all("audio"):
                audio_src = audio_tag.get("src", "")
                markdown_audio = f"![audio:{audio_src}]({audio_src})"
                wrapper = soup.new_tag("media-wrapper")
                wrapper.string = markdown_audio
                audio_tag.replace_with(wrapper)

    def _process_links(self, soup: Any) -> None:
        """Processes the links in the HTML content.

        Args:
            soup (Any): Parsed HTML content using BeautifulSoup.
        """
        for a_tag in soup.find_all("a"):
            a_href = a_tag.get("href", "")
            a_text = a_tag.get_text(strip=True)
            markdown_link = f"[{a_text}]({a_href})"
            wrapper = soup.new_tag("link-wrapper")
            wrapper.string = markdown_link
            a_tag.replace_with(markdown_link)

    def _filter_tags(self, soup: Any) -> None:
        """Filters the HTML content based on the allowlist and denylist tags.

        Args:
            soup (Any): Parsed HTML content using BeautifulSoup.
        """
        if self._allowlist_tags:
            for tag in soup.find_all(name=True):
                if tag.name not in self._allowlist_tags:
                    tag.decompose()

        if self._denylist_tags:
            for tag in soup.find_all(self._denylist_tags):
                tag.decompose()

    def _normalize_and_clean_text(self, text: str) -> str:
        """Normalizes the text by removing extra spaces and newlines.

        Args:
            text (str): The text to be normalized.

        Returns:
            str: The normalized text.
        """
        if self._normalize_text:
            text = text.lower()
            text = re.sub(r"[^\w\s]", "", text)
            text = re.sub(r"\s+", " ", text).strip()

        if self._stopword_removal:
            text = " ".join(
                [word for word in text.split() if word not in self._stopwords]
            )

        return text

    def _process_html(self, soup: Any) -> list[Document]:
        """Processes the HTML content using BeautifulSoup and splits it using headers.

        Args:
            soup (Any): Parsed HTML content using BeautifulSoup.

        Returns:
            List[Document]: A list of Document objects containing the split content.
        """
        documents: list[Document] = []
        current_headers: dict[str, str] = {}
        current_content: list[str] = []
        preserved_elements: dict[str, str] = {}
        placeholder_count: int = 0

        def _get_element_text(element: Any) -> str:
            """Recursively extracts and processes the text of an element.

            Applies custom handlers where applicable, and ensures correct spacing.

            Args:
                element (Any): The HTML element to process.

            Returns:
                str: The processed text of the element.
            """
            if element.name in self._custom_handlers:
                return self._custom_handlers[element.name](element)

            text = ""

            if element.name is not None:
                for child in element.children:
                    child_text = _get_element_text(child).strip()
                    if text and child_text:
                        text += " "
                    text += child_text
            elif element.string:
                text += element.string

            return self._normalize_and_clean_text(text)

        elements = soup.find_all(recursive=False)

        def _process_element(
            element: list[Any],
            documents: list[Document],
            current_headers: dict[str, str],
            current_content: list[str],
            preserved_elements: dict[str, str],
            placeholder_count: int,
        ) -> tuple[list[Document], dict[str, str], list[str], dict[str, str], int]:
            for elem in element:
                if elem.name.lower() in ["html", "body", "div", "main"]:
                    children = elem.find_all(recursive=False)
                    (
                        documents,
                        current_headers,
                        current_content,
                        preserved_elements,
                        placeholder_count,
                    ) = _process_element(
                        children,
                        documents,
                        current_headers,
                        current_content,
                        preserved_elements,
                        placeholder_count,
                    )
                    content = " ".join(elem.find_all(string=True, recursive=False))
                    if content:
                        content = self._normalize_and_clean_text(content)
                        current_content.append(content)
                    continue

                if elem.name in [h[0] for h in self._headers_to_split_on]:
                    if current_content:
                        documents.extend(
                            self._create_documents(
                                current_headers,
                                " ".join(current_content),
                                preserved_elements,
                            )
                        )
                        current_content.clear()
                        preserved_elements.clear()
                    header_name = elem.get_text(strip=True)
                    current_headers = {
                        dict(self._headers_to_split_on)[elem.name]: header_name
                    }
                elif elem.name in self._elements_to_preserve:
                    placeholder = f"PRESERVED_{placeholder_count}"
                    preserved_elements[placeholder] = _get_element_text(elem)
                    current_content.append(placeholder)
                    placeholder_count += 1
                else:
                    content = _get_element_text(elem)
                    if content:
                        current_content.append(content)

            return (
                documents,
                current_headers,
                current_content,
                preserved_elements,
                placeholder_count,
            )

        # Process the elements
        (
            documents,
            current_headers,
            current_content,
            preserved_elements,
            placeholder_count,
        ) = _process_element(
            elements,
            documents,
            current_headers,
            current_content,
            preserved_elements,
            placeholder_count,
        )

        # Handle any remaining content
        if current_content:
            documents.extend(
                self._create_documents(
                    current_headers,
                    " ".join(current_content),
                    preserved_elements,
                )
            )

        return documents

    def _create_documents(
        self, headers: dict[str, str], content: str, preserved_elements: dict[str, str]
    ) -> list[Document]:
        """Creates Document objects from the provided headers, content, and elements.

        Args:
            headers (dict): The headers to attach as metadata to the Document.
            content (str): The content of the Document.
            preserved_elements (dict): Preserved elements to be reinserted
            into the content.

        Returns:
            List[Document]: A list of Document objects.
        """
        content = re.sub(r"\s+", " ", content).strip()

        metadata = {**headers, **self._external_metadata}

        if len(content) <= self._max_chunk_size:
            page_content = self._reinsert_preserved_elements(
                content, preserved_elements
            )
            return [Document(page_content=page_content, metadata=metadata)]
        return self._further_split_chunk(content, metadata, preserved_elements)

    def _further_split_chunk(
        self, content: str, metadata: dict[Any, Any], preserved_elements: dict[str, str]
    ) -> list[Document]:
        """Further splits the content into smaller chunks.

        Args:
            content (str): The content to be split.
            metadata (dict): Metadata to attach to each chunk.
            preserved_elements (dict): Preserved elements
            to be reinserted into each chunk.

        Returns:
            List[Document]: A list of Document objects containing the split content.
        """
        splits = self._recursive_splitter.split_text(content)
        result = []

        for split in splits:
            split_with_preserved = self._reinsert_preserved_elements(
                split, preserved_elements
            )
            if split_with_preserved.strip():
                result.append(
                    Document(
                        page_content=split_with_preserved.strip(),
                        metadata=metadata,
                    )
                )

        return result

    def _reinsert_preserved_elements(
        self, content: str, preserved_elements: dict[str, str]
    ) -> str:
        """Reinserts preserved elements into the content into their original positions.

        Args:
            content (str): The content where placeholders need to be replaced.
            preserved_elements (dict): Preserved elements to be reinserted.

        Returns:
            str: The content with placeholders replaced by preserved elements.
        """
        for placeholder, preserved_content in preserved_elements.items():
            content = content.replace(placeholder, preserved_content.strip())
        return content


# %%
